SPARC Dataset Citations

Continually updated list of SPARC datasets, how to cite them, and original protocol and/or publication source

Dataset: Influence of left vagal stimulus pulse parameters on vagal and gastric activity in rat

DOI: 10.26275/qh3q-elj6 Dataset ID: 9 Dataset Version: 4

To cite this dataset: Ward, M., Nowak, T. V., Phillips, R., Tan, Z., & Powley, T. (2019). Influence of left vagal stimulus pulse parameters on vagal and gastric activity in rat (Version 4) [Data set]. SPARC Consortium. https://doi.org/10.26275/QH3Q-ELJ6

Protocol & Original Publication

DOI: doi:10.17504/protocols.io.2kugcww [Protocol] 
Citation: Ward, M., V Nowak, T., Tan, Z., Rajwa, B., Phillips, R., & L Powley, T. (2019). A simple approach to identify the influence of left vagal stimulus pulse parameters on vagal and gastric electrical activity in rat v1. https://doi.org/10.17504/protocols.io.2kugcww


DOI: doi:10.1109/TNSRE.2014.2351271 [Originating Publication] 
Citation: Ward, M. P., Qing, K. Y., Otto, K. J., Worth, R. M., John, S. W. M., & Irazoqui, P. P. (2015). A Flexible Platform for Biofeedback-Driven Control and Personalization of Electrical Nerve Stimulation Therapy. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 23(3), 475–484. https://doi.org/10.1109/tnsre.2014.2351271

Dataset: Spatial distribution and morphometric characterization of vagal afferents associated with the myenteric plexus of the rat stomach

DOI: 10.26275/wzry-sf7v Dataset ID: 10 Dataset Version: 3

To cite this dataset: Powley, T., Phillips, R., Jaffey, D., Rajwa, B., McAdams, J., Baronowsky, E., Chesney, L., Black, D., & Evans, C. (2019). Spatial distribution and morphometric characterization of vagal afferents associated with the myenteric plexus of the rat stomach (Version 3) [Data set]. SPARC Consortium. https://doi.org/10.26275/WZRY-SF7V

Protocol & Original Publication

DOI: doi:10.17504/protocols.io.2ipgcdn [Protocol] 
Citation: Powley, T., Mcadams, J., & Phillips, R. (2019). High resolution labeling of vagal afferent fibers using Dextran-Biotin with counterstaining v1. https://doi.org/10.17504/protocols.io.2ipgcdn


DOI: doi:10.1152/ajpregu.00111.2020 [Citation] 
Citation: Tan, Z. T., Ward, M., Phillips, R. J., Zhang, X., Jaffey, D. M., Chesney, L., Rajwa, B., Baronowsky, E. A., McAdams, J., & Powley, T. L. (2021). Stomach region stimulated determines effects on duodenal motility in rats. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 320(3), R331–R341. https://doi.org/10.1152/ajpregu.00111.2020

Distribution and coexpression patterns of specific cell markers of enteroendocrine cells in pig gastric epithelium

DOI: 10.26275/6gqy-iwhm Dataset ID: 22 Dataset Version: 1

Dataset citation: Fothergill, L. J., Furness, J., Stebbing, M., Galiazzo, G., Hunne, B., Fahkry, J., Weissenborn, F., & Fazio Coles, T. E. (2019). Distribution and coexpression patterns of specific cell markers of enteroendocrine cells in pig gastric epithelium (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/6GQY-IWHM

Cited by

DOI: doi:10.17504/protocols.io.4vngw5e [Protocol] 
Citation: J. Fothergill, L., Stebbing, M., Hunne, B., Galiazzo, G., Fahkry, J., Weissenborn, F., Fazio Coles, T., & B. Furness, J. (2019). Immunohistochemistry and high resolution microscopy of pig gastric enteroendocrine cells v1. https://doi.org/10.17504/protocols.io.4vngw5e

Computational modelling of the mechanical behavior of the colon

DOI: 10.26275/duz8-mq3n Dataset ID: 44 Dataset Version: 2

Dataset citation: Patel, B., Kassab, G., & Gregersen, H. (2019). Computational modelling of the mechanical behavior of the colon (Version 2) [Data set]. SPARC Consortium. https://doi.org/10.26275/DUZ8-MQ3N

Cited by

DOI: doi:10.17504/protocols.io.wzeff3e [Protocol] 
Citation: Patel, B. (2019). Simulating colonic tissue mechanics using a structure-based material model in Abaqus v1. https://doi.org/10.17504/protocols.io.wzeff3e


DOI: doi:10.1016/j.jmbbm.2017.08.031 [Originating Publication] 
Citation: Patel, B., Chen, H., Ahuja, A., Krieger, J. F., Noblet, J., Chambers, S., & Kassab, G. S. (2018). Constitutive modeling of the passive inflation-extension behavior of the swine colon. Journal of the Mechanical Behavior of Biomedical Materials, 77, 176–186. https://doi.org/10.1016/j.jmbbm.2017.08.031

Chronic interfacing with the autonomic nervous system using carbon nanotube (CNT) yarn electrodes

DOI: 10.26275/t4ng-2zm6 Dataset ID: 48 Dataset Version: 1

Dataset citation: McCallum, G., Sui, X., Qiu, C., Marmerstein, J., Zheng, Y., E. Eggers, T., Hu, C., Dai, L., & Durand, D. (2020). Chronic interfacing with the autonomic nervous system using carbon nanotube (CNT) yarn electrodes (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/T4NG-2ZM6

Cited by

DOI: doi:10.17504/protocols.io.wssfeee [Protocol] 
Citation: Mccallum, G., Kostick, N., Marmerstein, J., Zheng, Y., & Durand, D. (2019). Glossopharyngeal Nerve Chronic  Recording In Anesthetized Rat v1. https://doi.org/10.17504/protocols.io.wssfeee


DOI: doi:10.1038/s41598-017-10639-w [Originating Publication] 
Citation: McCallum, G. A., Sui, X., Qiu, C., Marmerstein, J., Zheng, Y., Eggers, T. E., Hu, C., Dai, L., & Durand, D. M. (2017). Chronic interfacing with the autonomic nervous system using carbon nanotube (CNT) yarn electrodes. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-10639-w
DOI: doi:10.17504/protocols.io.2kugcww [Protocol] 
Citation: Ward, M., V Nowak, T., Tan, Z., Rajwa, B., Phillips, R., & L Powley, T. (2019). A simple approach to identify the influence of left vagal stimulus pulse parameters on vagal and gastric electrical activity in rat v1. https://doi.org/10.17504/protocols.io.2kugcww


DOI: doi:10.1109/TNSRE.2014.2351271 [Originating Publication] 
Citation: Ward, M. P., Qing, K. Y., Otto, K. J., Worth, R. M., John, S. W. M., & Irazoqui, P. P. (2015). A Flexible Platform for Biofeedback-Driven Control and Personalization of Electrical Nerve Stimulation Therapy. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 23(3), 475–484. https://doi.org/10.1109/tnsre.2014.2351271

Processed fMRI data of transcutaneous auricular vagus nerve (taVNS) stimulation in humans

DOI: 10.26275/guqw-r3ca Dataset ID: 50 Dataset Version: 1

Dataset citation: Napadow, V., & Sclocco, R. (2020). Processed fMRI data of transcutaneous auricular vagus nerve (taVNS) stimulation in humans (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/GUQW-R3CA

Cited by

DOI: doi:10.17504/protocols.io.9zqh75w [Protocol] 
Citation: Napadow, V., Sclocco, R., Napadow, V., & Sclocco, R. (2019). 7T MRI Protocol for response to Respiratory-gated Auricular Vagal Afferent Nerve Stimulation v1. https://doi.org/10.17504/protocols.io.9zqh75w

Vagus nerve stimulation promotes gastric emptying by increasing pyloric opening measured with magnetic resonance imaging

DOI: 10.26275/mvwc-fnqm Dataset ID: 24 Dataset Version: 2

Dataset citation: Lu, K.-H., Cao, J., Oleson, S., Ward, M., Phillips, R., Powley, T., Liu, Z., Jaffey, D., & Rajwa, B. (2019). Vagus nerve stimulation promotes gastric emptying by increasing pyloric opening measured with magnetic resonance imaging (Version 2) [Data set]. SPARC Consortium. https://doi.org/10.26275/MVWC-FNQM

Cited by

DOI: doi:10.17504/protocols.io.wvxfe7n [Protocol] 
Citation: Lu, K.-H., Liu, Z., & Cao, J. (2019). Contrast-enhanced magnetic resonance imaging of gastric emptying and motility in rats v1. https://doi.org/10.17504/protocols.io.wvxfe7n


DOI: doi:10.1111/nmo.13380 [Originating Publication] 
Citation: Lu, K. ‐H., Cao, J., Oleson, S., Ward, M. P., Phillips, R. J., Powley, T. L., & Liu, Z. (2018). Vagus nerve stimulation promotes gastric emptying by increasing pyloric opening measured with magnetic resonance imaging. Neurogastroenterology & Motility, 30(10). Portico. https://doi.org/10.1111/nmo.13380

Effect of intermittent hypoxia preconditioning in rats with chronic cervical spinal cord injury – An electrophysiological study

DOI: 10.26275/c4xq-9kl0 Dataset ID: 52 Dataset Version: 1

Dataset citation: Mitchell, G., Gonzalez-Rothi, E., Allen, L., Ciesla, M., Tadjalli, A., & Simon, A. (2020). Effect of intermittent hypoxia preconditioning in rats with chronic cervical spinal cord injury – An electrophysiological study (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/C4XQ-9KL0

Cited by

DOI: doi:10.17504/protocols.io.2jpgcmn [Protocol] 
Citation: Gonzalez-Rothi, E., Tadjalli, A., Perim, R., & Mitchell, G. (2019). SPARC bilateral terminal phrenic neurophysiology preparation with moderate acute intermittent hypoxia v1. https://doi.org/10.17504/protocols.io.2jpgcmn

Robust 3-Dimensional visualization of human colon enteric nervous system without tissue sectioning

DOI: 10.26275/pzek-91wx Dataset ID: 55 Dataset Version: 1

Dataset citation: Graham, K. D., Huerta-Lopez, S., Sengupta, R., Shenoy, A., Schneider, S., Wright, C. M., Feldman, M., Furth, E., Lemke, A., Wilkins, B. J., Naji, A., Doolin, E., Howard, M., & Heuckeroth, R. (2020). Robust 3-Dimensional visualization of human colon enteric nervous system without tissue sectioning (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/PZEK-91WX

Cited by

DOI: doi:10.17504/protocols.io.wyeffte [Protocol] 
Citation: Heuckeroth, R., Huerta Lopez, S., Graham, K., & Sengupta, R. (2019). Human colon tissue clearing and Immunohistochemistry v1. https://doi.org/10.17504/protocols.io.wyeffte

Visualizing sympathetic projections in the intact brown adipose tissue depot in the mouse

DOI: 10.26275/ge74-ypxd Dataset ID: 54 Dataset Version: 1

Dataset citation: Lee, S., & Zeltser, L. (2020). Visualizing sympathetic projections in the intact brown adipose tissue depot in the mouse (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/GE74-YPXD

Cited by

DOI: doi:10.17504/protocols.io.wqmfdu6 [Protocol] 
Citation: Lee, S., & Zeltser, L. (2019). iDisco immunolabeling in brown adipose tissue (BAT) v1. https://doi.org/10.17504/protocols.io.wqmfdu6

Cholera toxin B retrograde tracing from brown adipose tissue and forelimb to the stellate ganglion

DOI: 10.26275/dwzu-xtmj Dataset ID: 56 Dataset Version: 1

Dataset citation: Lee, S., & Zeltser, L. (2020). Cholera toxin B retrograde tracing from brown adipose tissue and forelimb to the stellate ganglion (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/DWZU-XTMJ

Cited by

DOI: doi:10.17504/protocols.io.wjrfcm6 [Protocol] 
Citation: Lee, S., & Zeltser, L. (2018). Retrograde labeling of brown adipose tissue (BAT)-projecting sympathetic neurons with cholera toxin B (CTB) v1. https://doi.org/10.17504/protocols.io.wjrfcm6

Functional neuronal nodose recording from pig- Modulation by myocardial ischemia and variably coupled PVC's

DOI: 10.26275/w4my-puqm Dataset ID: 58 Dataset Version: 1

Dataset citation: Vaseghi, M., Salavtion, S., Yamagochi, N., Hoang, J., Lin, N., Ardell, J., & Armour, J. (2020). Functional neuronal nodose recording from pig- Modulation by myocardial ischemia and variably coupled PVC's (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/W4MY-PUQM

Cited by

DOI: doi:10.17504/protocols.io.2i4gcgw [Protocol] 
Citation: Ardell, J. (2019). Pig-Neural recording and analysis-workflow v1. https://doi.org/10.17504/protocols.io.2i4gcgw


DOI: doi:10.17504/protocols.io.2ncgdaw [Protocol] 
Citation: Vaseghi, M., & Ardell, J. (2019). Pig Nodose Ganglion protocol v1. https://doi.org/10.17504/protocols.io.2ncgdaw


DOI: doi:10.1152/ajpheart.00286.2019 [Originating Publication] 
Citation: Salavatian, S., Yamaguchi, N., Hoang, J., Lin, N., Patel, S., Ardell, J. L., Armour, J. A., & Vaseghi, M. (2019). Premature ventricular contractions activate vagal afferents and alter autonomic tone: implications for premature ventricular contraction-induced cardiomyopathy. American Journal of Physiology-Heart and Circulatory Physiology, 317(3), H607–H616. https://doi.org/10.1152/ajpheart.00286.2019

Mapping of human gastric enteroendocrine cells

DOI: 10.26275/ppgj-qqpf Dataset ID: 59 Dataset Version: 1

Dataset citation: Fakhry, J., Stebbing, M., Hunne, B., Bayguinov, Y., Ward, S. M., Sasse, K. C., Callaghan, B., McQuade, R. M., & Furness, J. (2020). Mapping of human gastric enteroendocrine cells (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/PPGJ-QQPF

Cited by

DOI: doi:10.17504/protocols.io.w3tfgnn [Protocol] 
Citation: Fakhry, J., Stebbing, M., Hunne, B., & B. Furness, J. (2019). Immunohistochemistry and high resolution microscopy of human gastric enteroendocrine cells v1. https://doi.org/10.17504/protocols.io.w3tfgnn


DOI: doi:10.1007/s00441-018-2957-0 [Originating Publication] 
Citation: Fakhry, J., Stebbing, M. J., Hunne, B., Bayguinov, Y., Ward, S. M., Sasse, K. C., Callaghan, B., McQuade, R. M., & Furness, J. B. (2018). Relationships of endocrine cells to each other and to other cell types in the human gastric fundus and corpus. Cell and Tissue Research, 376(1), 37–49. https://doi.org/10.1007/s00441-018-2957-0

Quantification of the relationship between rat gastric nerve fibers and enteroendocrine cells (EEC)

DOI: 10.26275/mzth-oxbk Dataset ID: 21 Dataset Version: 2

Dataset citation: Hunne, B., Furness, J., Stebbing, M., McQuade, R. M., & Fahkry, J. (2019). Quantification of the relationship between rat gastric nerve fibers and enteroendocrine cells (EEC) (Version 2) [Data set]. SPARC Consortium. https://doi.org/10.26275/MZTH-OXBK

Cited by

DOI: doi:10.17504/protocols.io.xz8fp9w [Protocol] 
Citation: Hunne, B., Stebbing, M., M McQuade, R., & B Furness, J. (2019). Immunohistochemistry and high resolution microscopy of rat gastric nerve fibers and their relationship with enteroendocrine cells v1. https://doi.org/10.17504/protocols.io.xz8fp9w

Quantification of rat gastric enteroendocrine cells

DOI: 10.26275/o9qr-l4x9 Dataset ID: 20 Dataset Version: 3

Dataset citation: Hunne, B., Furness, J., Stebbing, M., McQuade, R. M., & Fahkry, J. (2019). Quantification of rat gastric enteroendocrine cells (Version 3) [Data set]. SPARC Consortium. https://doi.org/10.26275/O9QR-L4X9

Cited by

DOI: doi:10.17504/protocols.io.xeyfjfw [Protocol] 
Citation: Hunne, B., Stebbing, M., M. McQuade, R., & B. Furness, J. (2019). Immunohistochemistry and high resolution microscopy of rat gastric enteroendocrine cells v1. https://doi.org/10.17504/protocols.io.xeyfjfw


DOI: doi:10.1007/s00441-019-03029-3 [Originating Publication] 
Citation: Hunne, B., Stebbing, M. J., McQuade, R. M., & Furness, J. B. (2019). Distributions and relationships of chemically defined enteroendocrine cells in the rat gastric mucosa. Cell and Tissue Research, 378(1), 33–48. https://doi.org/10.1007/s00441-019-03029-3

Imaging fast neural traffic at fascicular level with electrical impedance tomography - proof of principle in rat sciatic nerve

DOI: 10.26275/spfh-lx9g Dataset ID: 62 Dataset Version: 1

Dataset citation: Aristovich, K., Donega, M., Blochet, C., Avery, J., Hannan, S., Chew, D. J., & Holder, D. (2020). Imaging fast neural traffic at fascicular level with electrical impedance tomography - proof of principle in rat sciatic nerve (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/SPFH-LX9G

Cited by

DOI: doi:10.17504/protocols.io.ww7ffhn [Protocol] 
Citation: Aristovich, K., Donega, M., & Holder, D. (2019). EIT data aquisition in rat sciatic nerve using stimulation of tibial and peroneal branches v1. https://doi.org/10.17504/protocols.io.ww7ffhn


DOI: doi:10.1088/1741-2552/aad78e [Originating Publication] 
Citation: Aristovich, K., Donegá, M., Blochet, C., Avery, J., Hannan, S., Chew, D. J., & Holder, D. (2018). Imaging fast neural traffic at fascicular level with electrical impedance tomography: proof of principle in rat sciatic nerve. Journal of Neural Engineering, 15(5), 056025. https://doi.org/10.1088/1741-2552/aad78e

Spatial distribution and morphometric characterization of vagal afferents associated with the myenteric plexus of the rat stomach

DOI: 10.26275/wzry-sf7v Dataset ID: 10 Dataset Version: 3

Dataset citation: Powley, T., Phillips, R., Jaffey, D., Rajwa, B., McAdams, J., Baronowsky, E., Chesney, L., Black, D., & Evans, C. (2019). Spatial distribution and morphometric characterization of vagal afferents associated with the myenteric plexus of the rat stomach (Version 3) [Data set]. SPARC Consortium. https://doi.org/10.26275/WZRY-SF7V

Cited by

DOI: doi:10.17504/protocols.io.2ipgcdn [Protocol] 
Citation: Powley, T., Mcadams, J., & Phillips, R. (2019). High resolution labeling of vagal afferent fibers using Dextran-Biotin with counterstaining v1. https://doi.org/10.17504/protocols.io.2ipgcdn


DOI: doi:10.1152/ajpregu.00111.2020 [Citation] 
Citation: Tan, Z. T., Ward, M., Phillips, R. J., Zhang, X., Jaffey, D. M., Chesney, L., Rajwa, B., Baronowsky, E. A., McAdams, J., & Powley, T. L. (2021). Stomach region stimulated determines effects on duodenal motility in rats. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 320(3), R331–R341. https://doi.org/10.1152/ajpregu.00111.2020

Spatial distribution and morphometric characterization of vagal afferents (intramuscular arrays (IMAs)) within the longitudinal and circular muscle layers of the rat stomach

DOI: 10.26275/3m8n-0owa Dataset ID: 11 Dataset Version: 3

Dataset citation: Powley, T., Phillips, R. J., Jaffey, D., Rajwa, B., McAdams, J., Baronowsky, E., Chesney, L., Black, D., Martin, F. N., & Hudson, C. N. (2019). Spatial distribution and morphometric characterization of vagal afferents (intramuscular arrays (IMAs)) within the longitudinal and circular muscle layers of the rat stomach (Version 3) [Data set]. SPARC Consortium. https://doi.org/10.26275/3M8N-0OWA

Cited by

DOI: doi:10.17504/protocols.io.2ipgcdn [Protocol] 
Citation: Powley, T., Mcadams, J., & Phillips, R. (2019). High resolution labeling of vagal afferent fibers using Dextran-Biotin with counterstaining v1. https://doi.org/10.17504/protocols.io.2ipgcdn


DOI: doi:10.1002/cne.23892 [Originating Publication] 
Citation: Powley, T. L., Hudson, C. N., McAdams, J. L., Baronowsky, E. A., & Phillips, R. J. (2015). Vagal Intramuscular Arrays: The Specialized Mechanoreceptor Arbors That Innervate the Smooth Muscle Layers of the Stomach Examined in the Rat. Journal of Comparative Neurology, 524(4), 713–737. Portico. https://doi.org/10.1002/cne.23892


DOI: doi:10.1152/ajpregu.00111.2020 [Citation] 
Citation: Tan, Z. T., Ward, M., Phillips, R. J., Zhang, X., Jaffey, D. M., Chesney, L., Rajwa, B., Baronowsky, E. A., McAdams, J., & Powley, T. L. (2021). Stomach region stimulated determines effects on duodenal motility in rats. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 320(3), R331–R341. https://doi.org/10.1152/ajpregu.00111.2020

Spatial distribution and morphometric characterization of vagal efferents associated with the myenteric plexus of the rat stomach

DOI: 10.26275/ukz3-0fao Dataset ID: 12 Dataset Version: 3

Dataset citation: Powley, T., Phillips, R., Jaffey, D., Rajwa, B., McAdams, J., Baronowsky, E., Chesney, L., Black, D., & Evans, C. (2019). Spatial distribution and morphometric characterization of vagal efferents associated with the myenteric plexus of the rat stomach (Version 3) [Data set]. SPARC Consortium. https://doi.org/10.26275/UKZ3-0FAO

Cited by

DOI: doi:10.17504/protocols.io.2iqgcdw [Protocol] 
Citation: Jaffey, D., Powley, T., Mcadams, J., & Phillips, R. (2019). High resolution labeling of vagal efferent fibers using Dextran-Biotin with counterstaining v1. https://doi.org/10.17504/protocols.io.2iqgcdw


DOI: doi:10.1038/s41583-021-00544-7 [Citation] 
Citation: Kim, M., Heo, G., & Kim, S.-Y. (2022). Neural signalling of gut mechanosensation in ingestive and digestive processes. Nature Reviews Neuroscience, 23(3), 135–156. https://doi.org/10.1038/s41583-021-00544-7

Feline brainstem neuron extracellular potential recordings

DOI: 10.26275/1upo-xvkt Dataset ID: 35 Dataset Version: 3

Dataset citation: Morris, K., Horton, K.-K., Segers, L., Nuding, S., Gestreau, C., Alencar, P., Shuman, D., O'Connor, R., Lindsey, B., Bolser, D., Davenport, P., & Pitts, T. (2019). Feline brainstem neuron extracellular potential recordings (Version 3) [Data set]. SPARC Consortium. https://doi.org/10.26275/1UPO-XVKT

Cited by

DOI: doi:10.17504/protocols.io.bci8iuhw [Citation] 
Citation: Segers, L., Morris, K., & Bolser, D. (2020). Morris USF Lab protocol v2. https://doi.org/10.17504/protocols.io.bci8iuhw


DOI: doi:10.3389/fphys.2018.00785 [Originating Publication] 
Citation: Horton, K.-K., Segers, L. S., Nuding, S. C., O’Connor, R., Alencar, P. A., Davenport, P. W., Bolser, D. C., Pitts, T., Lindsey, B. G., Morris, K. F., & Gestreau, C. (2018). Central Respiration and Mechanical Ventilation in the Gating of Swallow With Breathing. Frontiers in Physiology, 9. https://doi.org/10.3389/fphys.2018.00785


DOI: doi:10.1101/2021.02.10.430563 [Citation] 
Citation: Bandrowski, A., Grethe, J. S., Pilko, A., Gillespie, T., Pine, G., Patel, B., Surles-Zeigler, M., & Martone, M. E. (2021). SPARC Data Structure: Rationale and Design of a FAIR Standard for Biomedical Research Data. https://doi.org/10.1101/2021.02.10.430563

Prototype simulation of undiseased human cardiac ventricular cells

DOI: 10.26275/uztw-z5sc Dataset ID: 63 Dataset Version: 2

Dataset citation: Clancy, C., & Yang, P.-C. (2020). Prototype simulation of undiseased human cardiac ventricular cells (Version 2) [Data set]. SPARC Consortium. https://doi.org/10.26275/UZTW-Z5SC

Cited by

DOI: doi:10.17504/protocols.io.xjwfkpe [Protocol] 
Citation: clancy, C., & Yang, P.-C. (2019). Undiseased Human Cardiac Ventricular Cells v1. https://doi.org/10.17504/protocols.io.xjwfkpe


DOI: doi:10.1371/journal.pcbi.1002061 [Originating Publication] 
Citation: O’Hara, T., Virág, L., Varró, A., & Rudy, Y. (2011). Simulation of the Undiseased Human Cardiac Ventricular Action Potential: Model Formulation and Experimental Validation. PLoS Computational Biology, 7(5), e1002061. https://doi.org/10.1371/journal.pcbi.1002061

Molecular phenotype distribution of single rat intracardiac neurons

DOI: 10.26275/xmyx-rnm9 Dataset ID: 29 Dataset Version: 6

Dataset citation: Achanta, S., Robbins, S., Moss, A., Gorky, J., Nieves, S., Tappan, S., Heal, M., Leung, C., Chen, J., Cheng, Z., Schwaber, J., & Vadigepalli, R. (2019). Molecular phenotype distribution of single rat intracardiac neurons (Version 6) [Data set]. SPARC Consortium. https://doi.org/10.26275/XMYX-RNM9

Cited by

DOI: doi:10.17504/protocols.io.w56fg9e [Protocol] 
Citation: Robbins, S., Moss, A., & Nieves, S. (2019). Molecular Phenotype Distribution of Single Rat ICN Neurons - Heart B v1. https://doi.org/10.17504/protocols.io.w56fg9e


DOI: doi:10.1016/j.isci.2020.101140 [Citation] 
Citation: Achanta, S., Gorky, J., Leung, C., Moss, A., Robbins, S., Eisenman, L., Chen, J., Tappan, S., Heal, M., Farahani, N., Huffman, T., England, S., Cheng, Z. (Jack), Vadigepalli, R., & Schwaber, J. S. (2020). A Comprehensive Integrated Anatomical and Molecular Atlas of Rat Intrinsic Cardiac Nervous System. IScience, 23(6), 101140. https://doi.org/10.1016/j.isci.2020.101140

Bilateral recordings of cervical vagus nerve activity in rats

DOI: 10.26275/osy6-dn3o Dataset ID: 51 Dataset Version: 1

Dataset citation: Ay, I., Helmer, K., Napadow, V., & Monello, C. (2020). Bilateral recordings of cervical vagus nerve activity in rats (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/OSY6-DN3O

Cited by

DOI: doi:10.17504/protocols.io.yxhfxj6 [Protocol] 
Citation: Napadow, V., Ay, I., & Morello, C. (2019). Recordings of cervical vagus nerve activity v1. https://doi.org/10.17504/protocols.io.yxhfxj6

iBAT (interscapular brown adipose tissue) sympathetic innervation circuit pseudorabies viral tracing in reporter mice

DOI: 10.26275/xkoa-oqec Dataset ID: 73 Dataset Version: 1

Dataset citation: Muenzberg, H., Berthoud, H.-R., Burk, D., Morrison, C. D., Yu, S., Qualls-Creekmore, E., François, M., Zhang, R., Huesing, C., Lee, N., Torres, H., & Saurage, C. (2020). iBAT (interscapular brown adipose tissue) sympathetic innervation circuit pseudorabies viral tracing in reporter mice (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/XKOA-OQEC

Cited by

DOI: doi:10.17504/protocols.io.wzuff6w [Protocol] 
Citation: Huesing, C., Muenzberg, H., Burk, D., & Torres, H. (2019). iDISCO protocol for whole-mount immunostaining and volume imaging v1. https://doi.org/10.17504/protocols.io.wzuff6w


DOI: doi:10.17504/protocols.io.wz3ff8n [Protocol] 
Citation: Huesing, C., Torres, H., Burk, D., & Muenzberg, H. (2019). Light sheet microscopy v1. https://doi.org/10.17504/protocols.io.wz3ff8n


DOI: doi:10.17504/protocols.io.w2vfge6 [Protocol] 
Citation: Muenzberg, H. (2019). Pseudorabies Virus (PRV) injection into interscapular brown adipose tissue v1. https://doi.org/10.17504/protocols.io.w2vfge6

Electrophysiology in dog after subcutaneous nerve stimulation

DOI: 10.26275/63lh-hdz5 Dataset ID: 49 Dataset Version: 1

Dataset citation: Wan, J., Chen, M., Yuan, Y., Wang, Z., Shen, C., Fishbein, M., Chen, Z., Wong, J., Grant, M., Everett, T., & Chen, P.-S. (2020). Electrophysiology in dog after subcutaneous nerve stimulation (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/63LH-HDZ5

Cited by

DOI: doi:10.1016/j.hrthm.2019.02.027 [Originating Publication] 
Citation: Wan, J., Chen, M., Yuan, Y., Wang, Z., Shen, C., Fishbein, M. C., Chen, Z., Wong, J., Grant, M. B., Everett, T. H., & Chen, P.-S. (2019). Antiarrhythmic and proarrhythmic effects of subcutaneous nerve stimulation in ambulatory dogs. Heart Rhythm, 16(8), 1251–1260. https://doi.org/10.1016/j.hrthm.2019.02.027

Submandibular ganglion stained by bungarotoxin and nanosensors in mouse

DOI: 10.26275/prjd-jhoc Dataset ID: 75 Dataset Version: 1

Datase citation: Xia, J., Yang, H., Mu, M., Duerr, T., Monaghan, J., & Clark, H. (2020). Submandibular ganglion stained by bungarotoxin and nanosensors in mouse (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/PRJD-JHOC

Cited by

DOI: doi:10.17504/protocols.io.wxrffm6 [Protocol] 
Citation: Yang, H., Xia, J., Monaghan, J., & A Clark, H. (2019). Staining and imaging of mouse submandibular ganglion by α-bungarotoxin and nanosensor v1. https://doi.org/10.17504/protocols.io.wxrffm6

Phrenic nerve immunohistochemistry

DOI: 10.26275/nnyt-bqpg Dataset ID: 53 Dataset Version: 1

Dataset citation: Mitchell, G., Gonzalez-Rothi, E., Bolser, D., Davenport, P. W., Allen, L., Ciesla, M., Seven, Y., Tadjalli, A., Simon, A., & Svetlov, A. (2020). Phrenic nerve immunohistochemistry (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/NNYT-BQPG

Cited by

DOI: doi:10.17504/protocols.io.2j3gcqn [Protocol] 
Citation: Gonzalez-Rothi, E., Allen, L., Simon, A., Seven, Y., Ciesla, M., & Mitchell, G. (2019). SPARC Long-term exposure to intermittent hypoxia (or normoxia) using a custom in-cage computer controlled system v1. https://doi.org/10.17504/protocols.io.2j3gcqn


DOI: doi:10.17504/protocols.io.2kfgctn [Protocol] 
Citation: Gonzalez-Rothi, E., Seven, Y., Allen, L., Ciesla, M., & Mitchell, G. (2019). SPARC Adenosine 2A Receptor Immunohistochemistry Protocol in Rat Tissues Labeled with Cholera Toxin B-fragment v1. https://doi.org/10.17504/protocols.io.2kfgctn


DOI: doi:10.17504/protocols.io.2kggctw [Protocol] 
Citation: Gonzalez-Rothi, E., Seven, Y., Allen, L., Ciesla, M., & Mitchell, G. (2019). SPARC Serotonin (5-HT) Immunohistochemistry Protocol in Rat Tissues Labeled with Cholera Toxin B-fragment v1. https://doi.org/10.17504/protocols.io.2kggctw


DOI: doi:10.17504/protocols.io.2khgct6 [Protocol] 
Citation: Gonzalez-Rothi, E., Seven, Y., Allen, L., Ciesla, M., & Mitchell, G. (2019). SPARC Serotonin 2A Receptor (5-HT2AR) Immunohistochemistry Protocol in Rat Tissues Labeled with Cholera Toxin B-fragment v1. https://doi.org/10.17504/protocols.io.2khgct6


DOI: doi:10.17504/protocols.io.2kigcue [Protocol] 
Citation: Gonzalez-Rothi, E., Seven, Y., Allen, L., Ciesla, M., & Mitchell, G. (2019). SPARC Serotonin 2B Receptor (5-HT2BR) Immunohistochemistry Protocol in Rat Tissues Labeled with Cholera Toxin B-fragment v1. https://doi.org/10.17504/protocols.io.2kigcue


DOI: doi:10.17504/protocols.io.2kjgcun [Protocol] 
Citation: Gonzalez-Rothi, E., Seven, Y., Allen, L., Ciesla, M., & Mitchell, G. (2019). SPARC Serotonin 7 Receptor (5-HT7) Immunohistochemistry Protocol in Rat Tissues Labeled with Cholera Toxin B-fragment v1. https://doi.org/10.17504/protocols.io.2kjgcun


DOI: doi:10.17504/protocols.io.2kngcve [Protocol] 
Citation: Gonzalez-Rothi, E., Ciesla, M., Allen, L., & Mitchell, G. (2019). SPARC C2 Spinal Cord Hemisection Protocol in Rats v1. https://doi.org/10.17504/protocols.io.2kngcve


DOI: doi:10.17504/protocols.io.2kpgcvn [Protocol] 
Citation: Allen, L., Ciesla, M., Seven, Y., Gonzalez-Rothi, E., & Pool, G. (2019). SPARC Retrograde Neuroanatomical Tracing of Phrenic Motor Neurons Using Intrapleural Injections of Cholera Toxin B Fragment v1. https://doi.org/10.17504/protocols.io.2kpgcvn

Functional recordings from the pig intrinsic cardiac nervous system (ICN)

DOI: 10.26275/owri-mpsx Dataset ID: 28 Dataset Version: 2

Dataset citation: Rajendran, P., Vaseghi, M., & Ardell, J. (2019). Functional recordings from the pig intrinsic cardiac nervous system (ICN) (Version 2) [Data set]. SPARC Consortium. https://doi.org/10.26275/OWRI-MPSX

Cited by

DOI: doi:10.17504/protocols.io.2jugcnw [Protocol] 
Citation: Ardell, J. (2019). Pig ICN recording v1. https://doi.org/10.17504/protocols.io.2jugcnw

Pig vagus nerve stained with Masson's trichrome

DOI: 10.26275/pgr9-bk2e Dataset ID: 82 Dataset Version: 1

Dataset citation: Pelot, N. A., Ezzell, J. A., Goldhagen, G. B., Musselman, E., Cariello, J. E., Clissold, K. A., & Grill, W. M. (2020). Pig vagus nerve stained with Masson's trichrome [Data set]. In Quantified vagus nerve morphology across species (Version 1). SPARC Consortium. https://doi.org/10.26275/PGR9-BK2E

Cited by

DOI: doi:10.17504/protocols.io.6bqhamw [Protocol] 
Citation: Ashley Ezzell, J., A. Pelot, N., A. Clissold, K., & M. Grill, W. (2019). SPARC_Duke_PelotGrill_OT2-OD025340_PigVagusNerve_Collection_Histology_Microscopy v1. https://doi.org/10.17504/protocols.io.6bqhamw

Rat vagus nerve stained with Masson's trichrome

DOI: 10.26275/z3ab-7j9y Dataset ID: 16 Dataset Version: 5

Dataset citation: Pelot, N. A., Ezzell, J. A., Goldhagen, G. B., Musselman, E., Cariello, J. E., Clissold, K. A., & Grill, W. M. (2020). Rat vagus nerve stained with Masson's trichrome (Version 5) [Data set]. SPARC Consortium. https://doi.org/10.26275/Z3AB-7J9Y

Cited by

DOI: doi:10.17504/protocols.io.bh4bj8sn [Protocol] 
Citation: Ashley Ezzell, J., A. Pelot, N., A. Clissold, K., & M. Grill, W. (2020). SPARC_Duke_PelotGrill_OT2-OD025340_RatVagusNerve_Collection_Histology_Microscopy v2. https://doi.org/10.17504/protocols.io.bh4bj8sn


DOI: doi:10.17504/protocols.io.ww3ffgn [Protocol] 
Citation: Ashley Ezzell, J., A. Pelot, N., A. Clissold, K., & M. Grill, W. (2019). SPARC_Duke_Grill_OT2-OD025340_RatVagusNerveCollectionHistologyMicroscopy v1. https://doi.org/10.17504/protocols.io.ww3ffgn


DOI: doi:10.3389/fnins.2020.601479 [Originating Publication] 
Citation: Pelot, N. A., Goldhagen, G. B., Cariello, J. E., Musselman, E. D., Clissold, K. A., Ezzell, J. A., & Grill, W. M. (2020). Quantified Morphology of the Cervical and Subdiaphragmatic Vagus Nerves of Human, Pig, and Rat. Frontiers in Neuroscience, 14. https://doi.org/10.3389/fnins.2020.601479

Characterizing the effect of feeding distension and emetic stimuli on gastric myoelectric activity in ferrets

DOI: 10.26275/boe7-1bms Dataset ID: 41 Dataset Version: 2

Dataset citation: Nanivadekar, A., Miller, D., Fulton, S., McLaughlin, B., Fisher, L., Yates, B., & Horn, C. (2020). Characterizing the effect of feeding distension and emetic stimuli on gastric myoelectric activity in ferrets (Version 2) [Data set]. SPARC Consortium. https://doi.org/10.26275/BOE7-1BMS

Cited by

DOI: doi:10.17504/protocols.io.6a7hahn [Protocol] 
Citation: C Horn, C., M. Miller, D., Fulton, S., J. Yates, B., E. Fisher, L., & C. Nanivadekar, A. (2019). SPARC - Acute surgery and experimentation of the gastrointestinal tract and vagus nerve in the ferret v1. https://doi.org/10.17504/protocols.io.6a7hahn


DOI: doi:10.17504/protocols.io.6a8hahw [Protocol] 
Citation: C Horn, C., M. Miller, D., Fulton, S., J. Yates, B., E. Fisher, L., & C. Nanivadekar, A. (2019). SPARC - Gastrointestinal myoelectric recordings from the behaving ferret v1. https://doi.org/10.17504/protocols.io.6a8hahw


DOI: doi:10.17504/protocols.io.6crhav6 [Protocol] 
Citation: C Horn, C., M. Miller, D., Fulton, S., J. Yates, B., E. Fisher, L., & C. Nanivadekar, A. (2019). SPARC - Chronic implantation of gastrointestinal and vagus nerve electrodes in the ferret v1. https://doi.org/10.17504/protocols.io.6crhav6


DOI: doi:10.1371/journal.pone.0223279 [Originating Publication] 
Citation: Nanivadekar, A. C., Miller, D. M., Fulton, S., Wong, L., Ogren, J., Chitnis, G., McLaughlin, B., Zhai, S., Fisher, L. E., Yates, B. J., & Horn, C. C. (2019). Machine learning prediction of emesis and gastrointestinal state in ferrets. PLOS ONE, 14(10), e0223279. https://doi.org/10.1371/journal.pone.0223279

Anatomy and histology of the domestic pig in the context of vagus nerve stimulation

DOI: 10.26275/fbzm-3eii Dataset ID: 85 Dataset Version: 1

Dataset citation: Ludwig, K. A., Settell, M. L., Pelot, N. A., Knudsen, B. E., Dingle, A., McConico, A. L., Nicolai, E. N., Trevathan, J. K., Ezzell, J. A., Ross, E., Gustafson, K. J., Shoffstall, A. J., Williams, J. C., Zeng, W., Poore, S., Populin, L., Suminski, A., & Grill, W. M. (2020). Anatomy and histology of the domestic pig in the context of vagus nerve stimulation (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/FBZM-3EII

Cited by

DOI: doi:10.17504/protocols.io.9ieh4be [Protocol] 
Citation: Settell, M., E Knudsen, B., L McConico, A., & A Ludwig, K. (2019). Protocol for Pig Vagus Nerve Microdissection and Histology v1. https://doi.org/10.17504/protocols.io.9ieh4be


DOI: doi:10.1088/1741-2552/ab7ad4 [Originating Publication] 
Citation: Settell, M. L., Pelot, N. A., Knudsen, B. E., Dingle, A. M., McConico, A. L., Nicolai, E. N., Trevathan, J. K., Ezzell, J. A., Ross, E. K., Gustafson, K. J., Shoffstall, A. J., Williams, J. C., Zeng, W., Poore, S. O., Populin, L. C., Suminski, A. J., Grill, W. M., & Ludwig, K. A. (2020). Functional vagotopy in the cervical vagus nerve of the domestic pig: implications for the study of vagus nerve stimulation. Journal of Neural Engineering, 17(2), 026022. https://doi.org/10.1088/1741-2552/ab7ad4

Distribution of nitregic cholinergic and all myenteric plexus neurons

DOI: 10.26275/0y4e-eskx Dataset ID: 36 Dataset Version: 4

Dataset citation: Heredia, D., Gould, T., & Smith, T. (2020). Distribution of nitregic cholinergic and all myenteric plexus neurons (Version 4) [Data set]. SPARC Consortium. https://doi.org/10.26275/0Y4E-ESKX

Cited by

DOI: doi:10.17504/protocols.io.xz6fp9e [Protocol] 
Citation: Heredia, D., & Smith, T. (2019). Dissection and fixation of murine colonic tissue for myenteric plexus visualization v1. https://doi.org/10.17504/protocols.io.xz6fp9e


DOI: doi:10.1152/ajpgi.00252.2018 [Originating Publication] 
Citation: Gould, T. W., Swope, W. A., Heredia, D. J., Corrigan, R. D., & Smith, T. K. (2019). Activity within specific enteric neurochemical subtypes is correlated with distinct patterns of gastrointestinal motility in the murine colon. American Journal of Physiology-Gastrointestinal and Liver Physiology, 317(2), G210–G221. https://doi.org/10.1152/ajpgi.00252.2018

Immediate early gene (IEG) mapping of spinal cord neurons activated by cystometry induced micturition in rat

DOI: 10.26275/jg3k-z5qm Dataset ID: 88 Dataset Version: 1

Dataset citation: Keast, J., Osborne, P., Wiedmann, N., & Wong, A. W. (2020). Immediate early gene (IEG) mapping of spinal cord neurons activated by cystometry induced micturition in rat (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/JG3K-Z5QM

Cited by

DOI: doi:10.17504/protocols.io.bakxicxn [Protocol] 
Citation: R Keast, J., B Osborne, P., & Wiedmann, N. (2019). Immediate Early Gene (IEG) mapping of spinal cord neurons activated by cystometry-induced micturition in rats [keast-002] v1. https://doi.org/10.17504/protocols.io.bakxicxn


DOI: doi:10.1002/cne.24949 [Originating Publication] 
Citation: Wiedmann, N. M., Wong, A. W., Keast, J. R., & Osborne, P. B. (2020). Sex differences in
        <scp>c‐Fos</scp>
        and
        <scp>EGR</scp>
        ‐1/Zif268 activity maps of rat sacral spinal cord following cystometry‐induced micturition. Journal of Comparative Neurology, 529(2), 311–326. Portico. https://doi.org/10.1002/cne.24949

Quantified morphology of the pig vagus nerve with anti-fibronectin

DOI: 10.26275/8pc2-rhu2 Dataset ID: 89 Dataset Version: 1

Dataset citation: Pelot, N. A., Ezzell, J. A., Goldhagen, G. B., Clissold, K. A., & Grill, W. M. (2020). Quantified morphology of the pig vagus nerve with anti-fibronectin (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/8PC2-RHU2

Cited by

DOI: doi:10.17504/protocols.io.bfwtjpen [Protocol] 
Citation: A. Pelot, N., Ashley Ezzell, J., B. Goldhagen, G., A. Clissold, K., & M. Grill, W. (2020). SPARC_Duke_PelotGrill_OT2-OD025340_PigVagusNerve_FibronectinIF_Morphology v1. https://doi.org/10.17504/protocols.io.bfwtjpen

Quantified morphology of the rat vagus nerve

DOI: 10.26275/ilb9-0e2a Dataset ID: 60 Dataset Version: 4

Dataset citation: Pelot, N. A., Goldhagen, G. B., Cariello, J. E., & Grill, W. M. (2020). Quantified morphology of the rat vagus nerve (Version 4) [Data set]. SPARC Consortium. https://doi.org/10.26275/ILB9-0E2A

Cited by

DOI: doi:10.17504/protocols.io.y6hfzb6 [Protocol] 
Citation: A. Pelot, N., B. Goldhagen, G., E. Cariello, J., & M. Grill, W. (2019). SPARC_Duke_PelotGrill_OT2-OD025340_RatVagusNerve_Morphology v1. https://doi.org/10.17504/protocols.io.y6hfzb6


DOI: doi:10.12688/f1000research.73492.1 [Citation] 
Citation: Quey, R., Schiefer, M. A., Kiran, A., & Patel, B. (2021). KnowMore: an automated knowledge discovery tool for the FAIR SPARC datasets. F1000Research, 10, 1132. https://doi.org/10.12688/f1000research.73492.1


DOI: doi:10.1088/1741-2552/ac36e2 [Citation] 
Citation: Eiber, C. D., Payne, S. C., Biscola, N. P., Havton, L. A., Keast, J. R., Osborne, P. B., & Fallon, J. B. (2021). Computational modelling of nerve stimulation and recording with peripheral visceral neural interfaces. Journal of Neural Engineering, 18(6), 066020. https://doi.org/10.1088/1741-2552/ac36e2


DOI: doi:10.1101/2021.08.08.455581 [Citation] 
Citation: Quey, R., Schiefer, M. A., Kiran, A., & Patel, B. (2021). KnowMore: an automated knowledge discovery tool for the FAIR SPARC datasets. https://doi.org/10.1101/2021.08.08.455581


DOI: doi:10.3389/fnins.2020.601479 [Originating Publication] 
Citation: Pelot, N. A., Goldhagen, G. B., Cariello, J. E., Musselman, E. D., Clissold, K. A., Ezzell, J. A., & Grill, W. M. (2020). Quantified Morphology of the Cervical and Subdiaphragmatic Vagus Nerves of Human, Pig, and Rat. Frontiers in Neuroscience, 14. https://doi.org/10.3389/fnins.2020.601479

Human vagus nerve stained with Masson's trichrome

DOI: 10.26275/sydt-lkiw Dataset ID: 61 Dataset Version: 3

Dataset citation: Pelot, N. A., Ezzell, J. A., Goldhagen, G. B., Musselman, E., Cariello, J. E., Clissold, K. A., & Grill, W. M. (2020). Human vagus nerve stained with Masson's trichrome (Version 3) [Data set]. SPARC Consortium. https://doi.org/10.26275/SYDT-LKIW

Cited by

DOI: doi:10.17504/protocols.io.bh4cj8sw [Protocol] 
Citation: A. Pelot, N., Ashley Ezzell, J., A. Clissold, K., & M. Grill, W. (2020). SPARC_Duke_PelotGrill_OT2-OD025340_HumanVagusNerve_Collection_Histology_Microscopy v2. https://doi.org/10.17504/protocols.io.bh4cj8sw


DOI: doi:10.17504/protocols.io.xcyfixw [Protocol] 
Citation: A. Pelot, N., Ashley Ezzell, J., A. Clissold, K., & M. Grill, W. (2019). SPARC_Duke_Grill_OT2-OD025340_HumanVagusNerve_Collection_Histology_Microscopy v1. https://doi.org/10.17504/protocols.io.xcyfixw


DOI: doi:10.3389/fnins.2020.601479 [Originating Publication] 
Citation: Pelot, N. A., Goldhagen, G. B., Cariello, J. E., Musselman, E. D., Clissold, K. A., Ezzell, J. A., & Grill, W. M. (2020). Quantified Morphology of the Cervical and Subdiaphragmatic Vagus Nerves of Human, Pig, and Rat. Frontiers in Neuroscience, 14. https://doi.org/10.3389/fnins.2020.601479

Quantified morphology of the pig vagus nerve

DOI: 10.26275/maq2-eii4 Dataset ID: 64 Dataset Version: 4

Dataset citation: Pelot, N. A., Goldhagen, G. B., Cariello, J. E., & Grill, W. M. (2020). Quantified morphology of the pig vagus nerve (Version 4) [Data set]. SPARC Consortium. https://doi.org/10.26275/MAQ2-EII4

Cited by

DOI: doi:10.17504/protocols.io.6bvhan6 [Protocol] 
Citation: A. Pelot, N., B. Goldhagen, G., E. Cariello, J., & M. Grill, W. (2019). SPARC_Duke_PelotGrill_OT2-OD025340_PigVagusNerve_Morphology v1. https://doi.org/10.17504/protocols.io.6bvhan6


DOI: doi:10.12688/f1000research.73492.1 [Citation] 
Citation: Quey, R., Schiefer, M. A., Kiran, A., & Patel, B. (2021). KnowMore: an automated knowledge discovery tool for the FAIR SPARC datasets. F1000Research, 10, 1132. https://doi.org/10.12688/f1000research.73492.1


DOI: doi:10.1101/2021.08.08.455581 [Citation] 
Citation: Quey, R., Schiefer, M. A., Kiran, A., & Patel, B. (2021). KnowMore: an automated knowledge discovery tool for the FAIR SPARC datasets. https://doi.org/10.1101/2021.08.08.455581


DOI: doi:doi.org/10.3389/fnins.2020.601479 [Originating Publication] 
Citation: Pelot, N. A., Goldhagen, G. B., Cariello, J. E., Musselman, E. D., Clissold, K. A., Ezzell, J. A., & Grill, W. M. (2020). Quantified Morphology of the Cervical and Subdiaphragmatic Vagus Nerves of Human, Pig, and Rat. Frontiers in Neuroscience, 14. https://doi.org/10.3389/fnins.2020.601479

Morphometric analysis of the abdominal vagus nerve in rats

DOI: 10.26275/ilkm-9f8r Dataset ID: 90 Dataset Version: 1

Dataset citation: Havton, L., Biscola, N., Grill, W. M., Pelot, N. A., Powley, T., & Ward, M. (2020). Morphometric analysis of the abdominal vagus nerve in rats (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/ILKM-9F8R

Cited by

DOI: doi:10.17504/protocols.io.xpxfmpn [Protocol] 
Citation: Biscola, N., & Havton, L. (2019). Nerve tissue processing for transmission electron microscopy (TEM) v1. https://doi.org/10.17504/protocols.io.xpxfmpn

A multi-scale model of cardiac electrophysiology

DOI: 10.26275/tv7g-o8ff Dataset ID: 23 Dataset Version: 2

Dataset citation: Clancy, C., & Yang, P.-C. (2020). A multi-scale model of cardiac electrophysiology (Version 2) [Data set]. SPARC Consortium. https://doi.org/10.26275/TV7G-O8FF

Cited by

DOI: doi:10.17504/protocols.io.5nkg5cw [Protocol] 
Citation: clancy, C., not provided, P.-C., & Aghasafari, P. (2019). A multi-scale model of cardiac electrophysiology v1. https://doi.org/10.17504/protocols.io.5nkg5cw


DOI: doi:10.1371/journal.pcbi.1006856 [Originating Publication] 
Citation: Yang, P.-C., Purawat, S., Ieong, P. U., Jeng, M.-T., DeMarco, K. R., Vorobyov, I., McCulloch, A. D., Altintas, I., Amaro, R. E., & Clancy, C. E. (2019). A demonstration of modularity, reuse, reproducibility, portability and scalability for modeling and simulation of cardiac electrophysiology using Kepler Workflows. PLOS Computational Biology, 15(3), e1006856. https://doi.org/10.1371/journal.pcbi.1006856

Identification of peripheral neural circuits that regulate heart rate using optogenetic and viral vector strategies

DOI: 10.26275/0ce8-cuwi Dataset ID: 32 Dataset Version: 3

Dataset citation: Rajendran, P., Challis, R., Fowlkes, C., Hanna, P., Tompkins, J. D., Jordan, M., Hiyari, S., Gabris-Weber, B., Greenbaum, A., Chan, K., Deverman, B., Muenzberg, H., Ardell, J., Salama, G., Gradinaru, V., & Shivkumar, K. (2020). Identification of peripheral neural circuits that regulate heart rate using optogenetic and viral vector strategies (Version 3) [Data set]. SPARC Consortium. https://doi.org/10.26275/0CE8-CUWI

Cited by

DOI: doi:10.17504/protocols.io.x3sfqne [Protocol] 
Citation: Rajendran, P. (2019). iDISCO clearing of mouse heart v1. https://doi.org/10.17504/protocols.io.x3sfqne


DOI: doi:10.1038/s41467-019-09770-1 [Originating Publication] 
Citation: Rajendran, P. S., Challis, R. C., Fowlkes, C. C., Hanna, P., Tompkins, J. D., Jordan, M. C., Hiyari, S., Gabris-Weber, B. A., Greenbaum, A., Chan, K. Y., Deverman, B. E., Münzberg, H., Ardell, J. L., Salama, G., Gradinaru, V., & Shivkumar, K. (2019). Identification of peripheral neural circuits that regulate heart rate using optogenetic and viral vector strategies. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-09770-1

Functional neuronal nodose recording from pig - Cardiac field chemical and mechanical stimulation

DOI: 10.26275/bjp1-ppqo Dataset ID: 27 Dataset Version: 2

Dataset citation: Vaseghi, M., Ardell, J. L., Shivkumar, K., & Salavatian, S. (2020). Functional neuronal nodose recording from pig - Cardiac field chemical and mechanical stimulation (Version 2) [Data set]. SPARC Consortium. https://doi.org/10.26275/BJP1-PPQO

Cited by

DOI: doi:10.17504/protocols.io.2ncgdaw [Protocol] 
Citation: Vaseghi, M., & Ardell, J. (2019). Pig Nodose Ganglion protocol v1. https://doi.org/10.17504/protocols.io.2ncgdaw

Excitation properties of computational models of unmyelinated peripheral axons

DOI: 10.26275/iiwv-k07f Dataset ID: 86 Dataset Version: 3

Dataset citation: Pelot, N. A., Catherall, D. C., Thio, B. J., & Grill, W. M. (2020). Excitation properties of computational models of unmyelinated peripheral axons (Version 3) [Data set]. SPARC Consortium. https://doi.org/10.26275/IIWV-K07F

Cited by

DOI: doi:10.1152/jn.00315.2020 [Originating Publication] 
Citation: Pelot, N. A., Catherall, D. C., Thio, B. J., Titus, N. D., Liang, E. D., Henriquez, C. S., & Grill, W. M. (2021). Excitation properties of computational models of unmyelinated peripheral axons. Journal of Neurophysiology, 125(1), 86–104. https://doi.org/10.1152/jn.00315.2020

Pig vagus nerve TH (tyrosine hydroxylase) and ChAT (choline acetyltransferase) positive fibers

DOI: 10.26275/dap3-ckep Dataset ID: 97 Dataset Version: 1

Dataset citation: Pelot, N. A., Ezzell, J. A., Cariello, J. E., Goldhagen, G. B., Clissold, K. A., & Grill, W. M. (2021). Pig vagus nerve TH (tyrosine hydroxylase) and ChAT (choline acetyltransferase) positive fibers (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/DAP3-CKEP

Cited by

DOI: doi:10.17504/protocols.io.6hehb3e [Protocol] 
Citation: Ashley Ezzell, J., A. Pelot, N., A. Clissold, K., & M. Grill, W. (2019). SPARC_Duke_Grill_OT2-OD025340_VagusNerve_IHC_TH v1. https://doi.org/10.17504/protocols.io.6hehb3e


DOI: doi:10.17504/protocols.io.6hfhb3n [Protocol] 
Citation: Ashley Ezzell, J., A. Pelot, N., A. Clissold, K., & M. Grill, W. (2019). SPARC_Duke_Grill_OT2-OD025340_VagusNerve_IHC_ChAT v1. https://doi.org/10.17504/protocols.io.6hfhb3n


DOI: doi:10.1088/1741-2552/ab7ad4 [Originating Publication] 
Citation: Settell, M. L., Pelot, N. A., Knudsen, B. E., Dingle, A. M., McConico, A. L., Nicolai, E. N., Trevathan, J. K., Ezzell, J. A., Ross, E. K., Gustafson, K. J., Shoffstall, A. J., Williams, J. C., Zeng, W., Poore, S. O., Populin, L. C., Suminski, A. J., Grill, W. M., & Ludwig, K. A. (2020). Functional vagotopy in the cervical vagus nerve of the domestic pig: implications for the study of vagus nerve stimulation. Journal of Neural Engineering, 17(2), 026022. https://doi.org/10.1088/1741-2552/ab7ad4


DOI: doi:10.1088/1741-2552/ac01ff [Citation] 
Citation: Settell, M. L., Pelot, N. A., Knudsen, B. E., Dingle, A. M., McConico, A. L., Nicolai, E. N., Trevathan, J. K., Ezzell, J. A., Ross, E. K., Gustafson, K. J., Shoffstall, A. J., Williams, J. C., Zeng, W., Poore, S. O., Populin, L. C., Suminski, A. J., Grill, W. M., & Ludwig, K. A. (2021). Corrigendum: Functional vagotopy in the cervical vagus nerve of the domestic pig: implications for the study of vagus nerve stimulation (2020 J. Neural Eng. 
           17 026022). Journal of Neural Engineering, 18(4), 049501. https://doi.org/10.1088/1741-2552/ac01ff

Human islet microvasculature analysis

DOI: 10.26275/fcrd-lbid Dataset ID: 43 Dataset Version: 5

Dataset citation: Campbell-Thompson, M., Butterworth, E., Carty, K., Nasif, L., & Peñaloza, J. (2021). Human islet microvasculature analysis (Version 5) [Data set]. SPARC Consortium. https://doi.org/10.26275/FCRD-LBID

Cited by

DOI: doi:10.17504/protocols.io.y3tfynn [Protocol] 
Citation: Campbell-Thompson, M., Butterworth Hosaka, E., & N Carty, K. (2019). Human Islet Microvasculature Immunofluorescence in Optically Cleared Samples v1. https://doi.org/10.17504/protocols.io.y3tfynn


DOI: doi:10.17504/protocols.io.9gbh3sn [Protocol] 
Citation: Butterworth, E., Dickerson, W., Vijay, V., Weitzel, K., Cooper, J., W. Atkinson, E., E. Coleman, J., Otto, K., & Campbell-Thompson, M. (2019). Human Pancreas PACT Optical Clearing and High Resolution 3D Microscopy v1. https://doi.org/10.17504/protocols.io.9gbh3sn


DOI: doi:10.17504/protocols.io.bjfzkjp6 [Protocol] 
Citation: Campbell-Thompson, M., Nair, M., & Sullivan, A. (2020). Vesselucida 360 Protocol for Segmenting and Analyzing Human Islet Microvasculature v1. https://doi.org/10.17504/protocols.io.bjfzkjp6


DOI: doi:10.17504/protocols.io.wxbffin [Protocol] 
Citation: Peñaloza, J., & Campbell-Thompson, M. (2019). Human Islet Microvasculature Image Processing v1. https://doi.org/10.17504/protocols.io.wxbffin

Immunohistochemical classification of sensory and autonomic neurons projecting to the lower urinary tract in rats

DOI: 10.26275/gdot-t59p Dataset ID: 106 Dataset Version: 1

Dataset citation: Keast, J., Osborne, P., Wong, A. W., Hunter, N., Morrison, V., & Richardson, E. (2021). Immunohistochemical classification of sensory and autonomic neurons projecting to the lower urinary tract in rats (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/GDOT-T59P

Cited by

DOI: doi:10.17504/protocols.io.w3gfgjw [Protocol] 
Citation: R Keast, J., & B Osborne, P. (2019). Immunohistochemical classification of sensory and autonomic neurons projecting to the lower urinary tract in rats [keast-001] v1. https://doi.org/10.17504/protocols.io.w3gfgjw

Micro Computed Tomography (Micro-CT) imaging of iodine-stained rat stomachs from full to empty

DOI: 10.26275/jl5t-xfgu Dataset ID: 107 Dataset Version: 1

Dataset citation: Powley, T., Jaffey, D., Chesney, L., McAdams, J., & Rajwa, B. (2021). Micro Computed Tomography (Micro-CT) imaging of iodine-stained rat stomachs from full to empty (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/JL5T-XFGU

Cited by

DOI: doi:10.17504/protocols.io.95ih84e [Protocol] 
Citation: Jaffey, D., Powley, T., & Chesney, L. (2019). Micro-CT imaging of iodine-stained rat stomach v1. https://doi.org/10.17504/protocols.io.95ih84e

Imaging in vivo acetylcholine release in the peripheral nervous system with a fluorescent nanosensor in mice

DOI: 10.26275/w027-cisv Dataset ID: 108 Dataset Version: 1

Dataset citation: Xia, J., Yang, H., Mu, M., Monaghan, J., & Clark, H. (2021). Imaging in vivo acetylcholine release in the peripheral nervous system with a fluorescent nanosensor in mice (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/W027-CISV

Cited by

DOI: doi:10.17504/protocols.io.bmmxk47n [Protocol] 
Citation: Xia, J., Yang, H., Mu, M., Micovic, N., E. Poskanzer, K., Monaghan, J., & A Clark, H. (2020). In vivo imaging of acetylcholine release in the peripheral nervous system with a fluorescent nanosensor v1. https://doi.org/10.17504/protocols.io.bmmxk47n


DOI: doi:10.1101/2020.07.06.189696 [Originating Publication] 
Citation: Xia, J., Yang, H., Mu, M., Micovic, N., Poskanzer, K. E., Monaghan, J. R., & Clark, H. A. (2020). A DNA-based optical nanosensor for in vivo imaging of acetylcholine in the peripheral nervous system. https://doi.org/10.1101/2020.07.06.189696

Spatial mapping and contextualization of axon subtypes innervating the long bones of C3H and B6 mice

DOI: 10.26275/6xtv-zfpc Dataset ID: 109 Dataset Version: 2

Dataset citation: Lorenz, M., Brazill, J. M., Beeve, A., Shen, I., & Scheller, E. L. (2021). Spatial mapping and contextualization of axon subtypes innervating the long bones of C3H and B6 mice (Version 2) [Data set]. SPARC Consortium. https://doi.org/10.26275/6XTV-ZFPC

Cited by

DOI: doi:10.17504/protocols.io.bqu2mwye [Protocol] 
Citation: Scheller, E., T Beeve, A., M Brazill, J., & Lorenz, M. (2020). Spatial mapping and contextualization of axon subtypes innervating the long bones of C3H and B6 mice v1. https://doi.org/10.17504/protocols.io.bqu2mwye


DOI: doi:10.1101/2020.09.18.303958 [Originating Publication] 
Citation: Lorenz, M. R., Brazill, J. M., Beeve, A., Shen, I., & Scheller, E. L. (2020). A neuroskeletal atlas of the mouse limb. https://doi.org/10.1101/2020.09.18.303958

Chronic wireless Urological Monitor of Conscious Activity (UroMOCA) implantation in feline bladder

DOI: 10.26275/717v-zsi2 Dataset ID: 120 Dataset Version: 1

Dataset citation: Hanzlicek, B., Damaser, M., Bourbeau, D., Rietsch, A., Majerus, S., McAdams, I., Deng, K., & Yang, J. (2021). Chronic wireless Urological Monitor of Conscious Activity (UroMOCA) implantation in feline bladder (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/717V-ZSI2

Cited by

DOI: doi:10.17504/protocols.io.bf2kjqcw [Protocol] 
Citation: Rietsch, A., Hanzlicek, B., Damaser, M., & Bourbeau, D. (2020). SPARC Cat acute UroMOCA implantation v1. https://doi.org/10.17504/protocols.io.bf2kjqcw


DOI: doi:10.17504/protocols.io.bf2pjqdn [Protocol] 
Citation: Hanzlicek, B., Abelson, B., Damaser, M., & Bourbeau, D. (2020). SPARC Cat acute UroMOCA implantation surgery v1. https://doi.org/10.17504/protocols.io.bf2pjqdn

MicroCT imaging of rat stomach vasculature with Microfil MV-122

DOI: 10.26275/zxe9-o3ss Dataset ID: 121 Dataset Version: 1

Dataset citation: Powley, T., Jaffey, D., Chesney, L., McAdams, J., & Rajwa, B. (2021). MicroCT imaging of rat stomach vasculature with Microfil MV-122 (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/ZXE9-O3SS

Cited by

DOI: doi:10.17504/protocols.io.bafnibme [Protocol] 
Citation: Jaffey, D., Chesney, L., & Powley, T. (2019). Micro-CT imaging of rat stomach vasculature v1. https://doi.org/10.17504/protocols.io.bafnibme

Functional mapping of the stomach neural circuitry - gastric electrical stimulation (GES) evoked duodenal motility in rats

DOI: 10.26275/rtzw-x9u4 Dataset ID: 123 Dataset Version: 1

Dataset citation: Tan, Z. T., Ward, M., Phillips, R., Zhang, X., Jaffey, D., Chesney, L., Rajwa, B., Baronowsky, E. A., McAdams, J. L., & Powley, T. (2021). Functional mapping of the stomach neural circuitry - gastric electrical stimulation (GES) evoked duodenal motility in rats (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/RTZW-X9U4

Cited by

DOI: doi:10.17504/protocols.io.2irgcd6 [Protocol] 
Citation: Powley, T., Tan, Z., & Ward, M. (2019). Measurement of duodenal motility using implanted strain gauges v1. https://doi.org/10.17504/protocols.io.2irgcd6

Chemogenetic iBAT (interscapular brown adipose tissue)-specific sympathetic stimulation and e-mitter implant in mice

DOI: 10.26275/tuof-9odl Dataset ID: 127 Dataset Version: 1

Dataset citation: Huesing, C., Lee, N., zhang, rui, & Muenzberg, H. (2021). Chemogenetic iBAT (interscapular brown adipose tissue)-specific sympathetic stimulation and e-mitter implant in mice (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/TUOF-9ODL

Cited by

DOI: doi:10.17504/protocols.io.bh3tj8nn [Protocol] 
Citation: Muenzberg, H. (2020). Bilateral Adeno-associated virus (AAV) injection into interscapular brown adipose tissue v1. https://doi.org/10.17504/protocols.io.bh3tj8nn


DOI: doi:10.17504/protocols.io.bpzbmp2n [Protocol] 
Citation: Lee, N. (2020). Abdominal Emitter Implantation v1. https://doi.org/10.17504/protocols.io.bpzbmp2n

Chemogenetic whole-body and iBAT (interscapular brown adipose tissue) -specific sympathetic stimulation in anesthetized mice

DOI: 10.26275/pidf-15l3 Dataset ID: 128 Dataset Version: 1

Dataset citation: Muenzberg, H., Huesing, C., & Lee, N. (2021). Chemogenetic whole-body and iBAT (interscapular brown adipose tissue) -specific sympathetic stimulation in anesthetized mice (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/PIDF-15L3

Cited by

DOI: doi:10.17504/protocols.io.bh3tj8nn [Protocol] 
Citation: Muenzberg, H. (2020). Bilateral Adeno-associated virus (AAV) injection into interscapular brown adipose tissue v1. https://doi.org/10.17504/protocols.io.bh3tj8nn

Gene expression profile of interscapular brown adipose tissue (iBAT) and inguinal white adipose tissue (iWAT) whole ganglia sequencing in mice

DOI: 10.26275/m9ti-0pbj Dataset ID: 131 Dataset Version: 1

Dataset citation: Muenzberg, H., Berthoud, H.-R., Yu, S., zhang, rui, Huesing, C., Lee, N., Carmouche, R., Webb, S., & Newman, S. (2021). Gene expression profile of interscapular brown adipose tissue (iBAT) and inguinal white adipose tissue (iWAT) whole ganglia sequencing in mice (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/M9TI-0PBJ

Cited by

DOI: doi:10.17504/protocols.io.98uh9ww [Protocol] 
Citation: Zhang, R., Huesing, C., & Muenzberg, H. (2019). RNA extraction_Trizol method_Protocol v1. https://doi.org/10.17504/protocols.io.98uh9ww


DOI: doi:10.17504/protocols.io.baagiabw [Protocol] 
Citation: Zhang, R., & Muenzberg, H. (2019). Sympathetic chain ganglia dissection_Protocol v1. https://doi.org/10.17504/protocols.io.baagiabw

Retrograde tracing of interscapular brown adipose tissue (iBAT) specific sympathetic neurons in mice - virus and reporter testing

DOI: 10.26275/pkgd-bopz Dataset ID: 133 Dataset Version: 1

Dataset citation: Muenzberg, H., Huesing, C., & François, M. (2021). Retrograde tracing of interscapular brown adipose tissue (iBAT) specific sympathetic neurons in mice - virus and reporter testing (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/PKGD-BOPZ

Cited by

DOI: doi:10.17504/protocols.io.bh3tj8nn [Protocol] 
Citation: Muenzberg, H. (2020). Bilateral Adeno-associated virus (AAV) injection into interscapular brown adipose tissue v1. https://doi.org/10.17504/protocols.io.bh3tj8nn

Acquisition of single neurons and regional neuronal samples from the porcine right atrial ganglionic plexus (RAGP) through laser capture microdissection

DOI: 10.26275/56h4-ypua Dataset ID: 137 Dataset Version: 1

Dataset citation: Moss, A., Robbins, S., Achanta, S., Nieves, S., Turick, S., Hanna, P., Ardell, J., Shivkumar, K., Schwaber, J., & Vadigepalli, R. (2021). Acquisition of single neurons and regional neuronal samples from the porcine right atrial ganglionic plexus (RAGP) through laser capture microdissection (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/56H4-YPUA

Cited by

DOI: doi:10.21203/rs.3.pex-928/v1 [Citation] 
Citation: Robbins, S., Vadigepalli, R., & Schwaber, J. (2021). Cryosectioning, block face imaging and Nissl staining fluorescently labeled pig heart. https://doi.org/10.21203/rs.3.pex-928/v1


DOI: doi:10.21203/rs.3.pex-927/v1 [Citation] 
Citation: Robbins, S., Achanta, S., & Vadigepalli, R. (2021). Laser Capture Microdissection (LCM) and 3D Sample Tracking Protocol. https://doi.org/10.21203/rs.3.pex-927/v1


DOI: doi:10.1101/2020.07.29.227090 [Citation] 
Citation: Moss, A., Robbins, S., Achanta, S., Kuttippurathu, L., Turick, S., Nieves, S., Hanna, P., Smith, E. H., Hoover, D. B., Chen, J., Cheng, Z. (Jack), Ardell, J. L., Shivkumar, K., Schwaber, J. S., & Vadigepalli, R. (2020). A spatially-tracked single cell transcriptomics map of neuronal networks in the intrinsic cardiac nervous system. https://doi.org/10.1101/2020.07.29.227090

TRAP-SEQ (Translating Ribosome Affinity Purification followed by RNA sequencing) of interscapular brown adipose tissue (iBAT)- related ganglia from 7-day cold and warm treated mice

DOI: 10.26275/ckgb-5ewo Dataset ID: 140 Dataset Version: 1

Dataset citation: Muenzberg, H., Salbaum, M., Berthoud, H.-R., Yu, S., zhang, rui, Huesing, C., Lee, N., Carmouche, R., Webb, S., & Newman, S. (2021). TRAP-SEQ (Translating Ribosome Affinity Purification followed by RNA sequencing) of interscapular brown adipose tissue (iBAT)- related ganglia from 7-day cold and warm treated mice (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/CKGB-5EWO

Cited by

DOI: doi:10.17504/protocols.io.babtiann [Protocol] 
Citation: Zhang, R. (2019). TRAP-SEQ_Sympathetic chain ganglia_Protocol v1. https://doi.org/10.17504/protocols.io.babtiann

Optogenetic stimulation prevents lipopolysaccharide induced TNFa production

DOI: 10.26275/advv-1awo Dataset ID: 143 Dataset Version: 1

Dataset citation: Murray, K., Barboza, M., Brust-Mascher, I., & Reardon, C. (2021). Optogenetic stimulation prevents lipopolysaccharide induced TNFa production (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/ADVV-1AWO

Cited by

DOI: doi:10.17504/protocols.io.wwbffan [Protocol] 
Citation: Murray, K., Sladek, J., & Reardon, C. (2019). Optogenetic Stimulation of superior mesenteric ganglion in a model of septic shock v1. https://doi.org/10.17504/protocols.io.wwbffan

Effects of cystotomy on the feline urinary bladder

DOI: 10.26275/imbg-0okx Dataset ID: 145 Dataset Version: 1

Dataset citation: Damaser, M., Bourbeau, D., Majerus, S., McAdams, I., Abelson, B., Rietsch, A., & Hanzlicek, B. (2022). Effects of cystotomy on the feline urinary bladder (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/IMBG-0OKX

Cited by

DOI: doi:10.17504/protocols.io.bfy9jpz6 [Protocol] 
Citation: Hanzlicek, B., Abelson, B., & Damaser, M. (2020). SPARC Cat surgery Day 0 v1. https://doi.org/10.17504/protocols.io.bfy9jpz6


DOI: doi:10.17504/protocols.io.bfzajp2e [Protocol] 
Citation: Hanzlicek, B., & Damaser, M. (2020). SPARC Cat - Sham Control Chronic Cat 1, Day 0 v1. https://doi.org/10.17504/protocols.io.bfzajp2e


DOI: doi:10.17504/protocols.io.bfzcjp2w [Protocol] 
Citation: Hanzlicek, B., & Damaser, M. (2020). SPARC Cat - Sham Control Chronic Cat 2, Day 0 v1. https://doi.org/10.17504/protocols.io.bfzcjp2w


DOI: doi:10.17504/protocols.io.bfzdjp26 [Protocol] 
Citation: Hanzlicek, B., & Damaser, M. (2020). SPARC Cat - Sham Control Chronic Cat 3, Day 0 v1. https://doi.org/10.17504/protocols.io.bfzdjp26


DOI: doi:10.17504/protocols.io.bfzhjp36 [Protocol] 
Citation: Hanzlicek, B., Rietsch, A., & Damaser, M. (2020). SPARC Cat - Sham Control Chronic Cat 1, Day 14 v1. https://doi.org/10.17504/protocols.io.bfzhjp36


DOI: doi:10.17504/protocols.io.bfzijp4e [Protocol] 
Citation: Hanzlicek, B., & Damaser, M. (2020). SPARC Cat - Sham Control Chronic Implant Cat 4, Day 0 v1. https://doi.org/10.17504/protocols.io.bfzijp4e


DOI: doi:10.17504/protocols.io.bfznjp5e [Protocol] 
Citation: Hanzlicek, B., Rietsch, A., & Damaser, M. (2020). SPARC Cat - Sham Control Chronic Cat 2, Day 14 v1. https://doi.org/10.17504/protocols.io.bfznjp5e


DOI: doi:10.17504/protocols.io.bfzpjp5n [Protocol] 
Citation: Hanzlicek, B., Rietsch, A., & Damaser, M. (2020). SPARC Cat - Sham Control Chronic Cat 3, Day 14 v1. https://doi.org/10.17504/protocols.io.bfzpjp5n


DOI: doi:10.17504/protocols.io.bfzrjp56 [Protocol] 
Citation: Hanzlicek, B., Rietsch, A., & Damaser, M. (2020). SPARC Cat - Sham Control Chronic Implant Cat 4, Day 14 v1. https://doi.org/10.17504/protocols.io.bfzrjp56


DOI: doi:10.17504/protocols.io.bfztjp6n [Protocol] 
Citation: Hanzlicek, B., Rietsch, A., & Damaser, M. (2020). SPARC Cat - Sham Control Chronic Cat 1 Day 30 v1. https://doi.org/10.17504/protocols.io.bfztjp6n


DOI: doi:10.17504/protocols.io.bfzwjp7e [Protocol] 
Citation: Hanzlicek, B., Rietsch, A., & Damaser, M. (2020). SPARC Cat - Sham Control Chronic Cat 2 Day 30 v1. https://doi.org/10.17504/protocols.io.bfzwjp7e


DOI: doi:10.17504/protocols.io.bfz3jp8n [Protocol] 
Citation: Hanzlicek, B., Rietsch, A., & Damaser, M. (2020). SPARC Cat - Sham Control Chronic Implant Cat 4, Day 30 v1. https://doi.org/10.17504/protocols.io.bfz3jp8n

In vitro imaging of mechanosensitive submucous neurons in the porcine colon

DOI: 10.26275/0khe-2os4 Dataset ID: 124 Dataset Version: 2

Dataset citation: Mazzuoli-Weber, G., Elfers, K., & Filzmayer, A. K. (2021). In vitro imaging of mechanosensitive submucous neurons in the porcine colon (Version 2) [Data set]. SPARC Consortium. https://doi.org/10.26275/0KHE-2OS4

Cited by

DOI: doi:10.17504/protocols.io.bpcamise [Protocol] 
Citation: Mazzuoli-Weber, G., Elfers, K., & Katharina Filzmayer, A. (2020). Mechanosensitive enteric neurons: incidence and abundance in the porcine submucosal plexus with ultrafast neuroimaging and immunhistochemical techniques v1. https://doi.org/10.17504/protocols.io.bpcamise


DOI: doi:10.1038/s41598-020-70216-6 [Originating Publication] 
Citation: Filzmayer, A. K., Elfers, K., Michel, K., Buhner, S., Zeller, F., Demir, I. E., Theisen, J., Schemann, M., & Mazzuoli-Weber, G. (2020). Compression and stretch sensitive submucosal neurons of the porcine and human colon. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-70216-6

Phrenic nerve stimulation spinal intact rats

DOI: 10.26275/jkux-orfg Dataset ID: 151 Dataset Version: 1

Dataset citation: Streeter, K., Sunshine, M., & Fuller, D. (2021). Phrenic nerve stimulation spinal intact rats (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/JKUX-ORFG

Cited by

DOI: doi:10.17504/protocols.io.bgfzjtp6 [Protocol] 
Citation: Streeter, K., sunshine, M., & Fuller, D. (2020). SPARC bilateral phrenic neurophysiology preparation with phrenic afferent stimulation - spinal intact study v1. https://doi.org/10.17504/protocols.io.bgfzjtp6

Lower urinary tract nerve responses to high-density epidural sacral spinal cord stimulation

DOI: 10.26275/zupz-yhtf Dataset ID: 74 Dataset Version: 2

Dataset citation: Gaunt, R., Fisher, L., Jantz, M., Gopinath, C., Novelli, M., & McLaughlin, B. (2021). Lower urinary tract nerve responses to high-density epidural sacral spinal cord stimulation (Version 2) [Data set]. SPARC Consortium. https://doi.org/10.26275/ZUPZ-YHTF

Cited by

DOI: doi:10.17504/protocols.io.xszfnf6 [Citation] 
Citation: Novelli, M. (2019). SPARC RNEL Bladder January 2019 protocol v1. https://doi.org/10.17504/protocols.io.xszfnf6


DOI: doi:10.1101/2021.04.30.442206 [Citation] 
Citation: Jantz, M. K., Gopinath, C., Kumar, R., Chin, C., Wong, L., Ogren, J. I., Fisher, L. E., McLaughlin, B. L., & Gaunt, R. A. (2021). High-density spinal cord stimulation selectively activates lower urinary tract afferents. https://doi.org/10.1101/2021.04.30.442206

Sympathetic iBAT (interscapular brown adipose tissue) activation high fat (HF) low fat (LF) diet study

DOI: 10.26275/1h3s-thms Dataset ID: 152 Dataset Version: 1

Dataset citation: Muenzberg, H., zhang, rui, Huesing, C., & Lee, N. (2021). Sympathetic iBAT (interscapular brown adipose tissue) activation high fat (HF) low fat (LF) diet study (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/1H3S-THMS

Cited by

DOI: doi:10.17504/protocols.io.bh3tj8nn [Protocol] 
Citation: Muenzberg, H. (2020). Bilateral Adeno-associated virus (AAV) injection into interscapular brown adipose tissue v1. https://doi.org/10.17504/protocols.io.bh3tj8nn

Optogenetic iBAT (interscapular brown adipose tissue) stimulation in anesthetized mice

DOI: 10.26275/j4he-9spq Dataset ID: 153 Dataset Version: 1

Dataset citation: Muenzberg, H., Huesing, C., Lee, N., & zhang, rui. (2021). Optogenetic iBAT (interscapular brown adipose tissue) stimulation in anesthetized mice (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/J4HE-9SPQ

Cited by

DOI: doi:10.17504/protocols.io.bh3tj8nn [Protocol] 
Citation: Muenzberg, H. (2020). Bilateral Adeno-associated virus (AAV) injection into interscapular brown adipose tissue v1. https://doi.org/10.17504/protocols.io.bh3tj8nn

Human whole-body with embedded organs

DOI: 10.26275/yibc-wyu2 Dataset ID: 156 Dataset Version: 1

Dataset citation: Soltani, E., Christie, R., & Hunter, P. (2021). Human whole-body with embedded organs (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/YIBC-WYU2

Cited by

DOI: doi:10.1101/2021.12.30.474265 [Citation] 
Citation: Börner, K., Bueckle, A., Herr, B. W., Cross, L. E., Quardokus, E. M., Record, E. G., Ju, Y., Silverstein, J. C., Browne, K. M., Jain, S., Wasserfall, C. H., Jorgensen, M. L., Spraggins, J. M., Patterson, N. H., & Weber, G. M. (2021). Tissue Registration and Exploration User Interfaces in support of a Human Reference Atlas. https://doi.org/10.1101/2021.12.30.474265

Antibodies tested in the colon – Mouse

DOI: 10.26275/i7dl-58h1 Dataset ID: 158 Dataset Version: 1

Dataset citation: Wang, L., Yuan , P.-Q., Gould, T., & Tache, Y. (2021). Antibodies tested in the colon – Mouse (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/I7DL-58H1

Cited by

DOI: doi:10.17504/protocols.io.bqavmse6 [Protocol] 
Citation: Wang, L., Challis, C., Liang, H., Li, S., Fowlkes, C., Sullivan, A., SR, K., & Taché, Y. (2020). Multicolor adeno-associate virus labeling and 3D digital tracing of enteric plexus in mouse proximal colon v1. https://doi.org/10.17504/protocols.io.bqavmse6

Sympathetic and parasympathetic effects on subcellular cAMP responses in isolated ventricular myocytes

DOI: 10.26275/ek1m-xqw1 Dataset ID: 159 Dataset Version: 1

Dataset citation: Agarwal, S., & Harvey, R. (2021). Sympathetic and parasympathetic effects on subcellular cAMP responses in isolated ventricular myocytes (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/EK1M-XQW1

Cited by

DOI: doi:10.17504/protocols.io.ba8hiht6 [Protocol] 
Citation: Harvey, R., & Agarwal, S. (2020). Preparation of Adult Rat Ventricular Myocytes for FRET Imaging Experiments v1. https://doi.org/10.17504/protocols.io.ba8hiht6


DOI: doi:10.3389/fphar.2018.00332 [Originating Publication] 
Citation: Agarwal, S. R., Gratwohl, J., Cozad, M., Yang, P.-C., Clancy, C. E., & Harvey, R. D. (2018). Compartmentalized cAMP Signaling Associated With Lipid Raft and Non-raft Membrane Domains in Adult Ventricular Myocytes. Frontiers in Pharmacology, 9. https://doi.org/10.3389/fphar.2018.00332

Single cell RNA sequencing (scRNAseq) analysis identifies the cell populations in the muscularis externa of the pig colon

DOI: 10.26275/lkvz-vrcy Dataset ID: 160 Dataset Version: 1

Dataset citation: Li, T., Yuan , P.-Q., & Tache, Y. (2021). Single cell RNA sequencing (scRNAseq) analysis identifies the cell populations in the muscularis externa of the pig colon (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/LKVZ-VRCY

Cited by

DOI: doi:10.17504/protocols.io.bgdmjs46 [Protocol] 
Citation: Li, T., Yuan, P.-Q., & Tache, Y. (2020). A single cell RNA sequencing protocol for the pig colon v1. https://doi.org/10.17504/protocols.io.bgdmjs46

3D imaging of enteric neurons in a male mouse

DOI: 10.26275/wyn1-eww6 Dataset ID: 161 Dataset Version: 1

Dataset citation: Kalinoski, A., & Howard, M. (2021). 3D imaging of enteric neurons in a male mouse (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/WYN1-EWW6

Cited by

DOI: doi:10.17504/protocols.io.wr6fd9e [Protocol] 
Citation: Howard, M. (2019). Wholemount Immunolabeling for GUT Samples v1. https://doi.org/10.17504/protocols.io.wr6fd9e

Effects of subcutaneous nerve stimulation on nerve sprouting in ambulatory dogs

DOI: 10.26275/ngey-3iz7 Dataset ID: 162 Dataset Version: 1

Dataset citation: Wan, J., Wong, J., & Chen, P.-S. (2021). Effects of subcutaneous nerve stimulation on nerve sprouting in ambulatory dogs (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/NGEY-3IZ7

Cited by

DOI: doi:10.17504/protocols.io.bv94n98w [Protocol] 
Citation: not provided, P.-Sheng. C., Kusayama, T., Wan, J., Yuan, Y., Liu, X., Li, X., Shen, C., C Fishbein, M., H Everett, T., & Peng-Sheng Chen,  not provided. (2021). Trichrome Staining Protocol in studies ofEffects of subcutaneous nerve stimulation on nerve sprouting in ambulatory dogs v1. https://doi.org/10.17504/protocols.io.bv94n98w


DOI: doi:10.17504/protocols.io.bv96n99e [Protocol] 
Citation: Kusayama, T., Wan, J., Yuan, Y., Liu, X., Li, X., C Fishbein, M., H Everett, T., & not provided, P.-Sheng. C. (2021). Immunostaining of tissues from dogs with subcutaneous nerve stimulation v1. https://doi.org/10.17504/protocols.io.bv96n99e


DOI: doi:10.1016/j.hrthm.2019.02.027 [Originating Publication] 
Citation: Wan, J., Chen, M., Yuan, Y., Wang, Z., Shen, C., Fishbein, M. C., Chen, Z., Wong, J., Grant, M. B., Everett, T. H., & Chen, P.-S. (2019). Antiarrhythmic and proarrhythmic effects of subcutaneous nerve stimulation in ambulatory dogs. Heart Rhythm, 16(8), 1251–1260. https://doi.org/10.1016/j.hrthm.2019.02.027

Sources of off-target effects for vagus nerve stimulation using the LivaNova clinical lead in swine

DOI: 10.26275/qcuk-a8ty Dataset ID: 163 Dataset Version: 1

Dataset citation: Nicolai, E. N., Settell, M. L., Gosink, B., Grill, W. M., Pelot, N. A., Knudsen, B. E., McConico, A. L., Trevathan, J. K., Baumgart, I. W., Ross, E., Gustafson, K. J., Shoffstall, A. J., Williams, J. C., & Ludwig, K. A. (2021). Sources of off-target effects for vagus nerve stimulation using the LivaNova clinical lead in swine (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/QCUK-A8TY

Cited by

DOI: doi:10.17504/protocols.io.bkeyktfw [Protocol] 
Citation: N Nicolai, E., & A Ludwig, K. (2020). Vagus Nerve Stimulation Evoked Electroneurography and Electromyography Recordings in Swine v1. https://doi.org/10.17504/protocols.io.bkeyktfw


DOI: doi:10.1088/1741-2552/ab9db8 [Originating Publication] 
Citation: Nicolai, E. N., Settell, M. L., Knudsen, B. E., McConico, A. L., Gosink, B. A., Trevathan, J. K., Baumgart, I. W., Ross, E. K., Pelot, N. A., Grill, W. M., Gustafson, K. J., Shoffstall, A. J., Williams, J. C., & Ludwig, K. A. (2020). Sources of off-target effects of vagus nerve stimulation using the helical clinical lead in domestic pigs. Journal of Neural Engineering, 17(4), 046017. https://doi.org/10.1088/1741-2552/ab9db8

Functional mapping with lumbosacral epidural stimulation for restoration of bladder function after spinal cord injury in rats (T13)

DOI: 10.26275/er7m-gir3 Dataset ID: 164 Dataset Version: 1

Dataset citation: Hubscher, C., Harkema, S., El-Baz, A., Mohamed, A., Wagers, S., Ugiliweneza, B., Herrity, A., Johnson, K., Armstrong, J., Fell, J., Chen, Y.-P., Zdunowski, S., Gallahar, A., Hargitt, J., Dougherty, S., Wade, S., Wyles, E., Hoey, R., Medina Aguiñaga, D., … Ichiyama, R. (2021). Functional mapping with lumbosacral epidural stimulation for restoration of bladder function after spinal cord injury in rats (T13) (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/ER7M-GIR3

Cited by

DOI: doi:10.17504/protocols.io.w6hfhb6 [Protocol] 
Citation: Hubscher, C., & Hoey, R. (2019). Epidural stimulation mapping protocol v1. https://doi.org/10.17504/protocols.io.w6hfhb6


DOI: doi:10.1038/s41598-021-81822-3 [Originating Publication] 
Citation: Hoey, R. F., Medina-Aguiñaga, D., Khalifa, F., Ugiliweneza, B., Zdunowski, S., Fell, J., Naglah, A., El-Baz, A. S., Herrity, A. N., Harkema, S. J., & Hubscher, C. H. (2021). Bladder and bowel responses to lumbosacral epidural stimulation in uninjured and transected anesthetized rats. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-81822-3

Quantified morphology of the human vagus nerve with anti-claudin-1

DOI: 10.26275/ofja-ghoz Dataset ID: 65 Dataset Version: 7

Dataset citation: Pelot, N. A., Ezzell, J. A., Goldhagen, G. B., Cariello, J. E., Clissold, K. A., & Grill, W. M. (2021). Quantified morphology of the human vagus nerve with anti-claudin-1 (Version 7) [Data set]. SPARC Consortium. https://doi.org/10.26275/OFJA-GHOZ

Cited by

DOI: doi:10.17504/protocols.io.bh4dj8s6 [Protocol] 
Citation: A. Pelot, N., Ashley Ezzell, J., B. Goldhagen, G., E. Cariello, J., A. Clissold, K., & M. Grill, W. (2020). SPARC_Duke_PelotGrill_OT2-OD025340_HumanVagusNerve_Claudin1IHC_Morphology v4. https://doi.org/10.17504/protocols.io.bh4dj8s6


DOI: doi:10.17504/protocols.io.6fzhbp6 [Protocol] 
Citation: A. Pelot, N., Ashley Ezzell, J., B. Goldhagen, G., E. Cariello, J., A. Clissold, K., & M. Grill, W. (2019). SPARC_Duke_Grill_OT2-OD025340_HumanVagusNerve_Claudin1IHC_Morphology v1. https://doi.org/10.17504/protocols.io.6fzhbp6


DOI: doi:10.12688/f1000research.73492.1 [Citation] 
Citation: Quey, R., Schiefer, M. A., Kiran, A., & Patel, B. (2021). KnowMore: an automated knowledge discovery tool for the FAIR SPARC datasets. F1000Research, 10, 1132. https://doi.org/10.12688/f1000research.73492.1


DOI: doi:10.1101/2021.08.08.455581 [Citation] 
Citation: Quey, R., Schiefer, M. A., Kiran, A., & Patel, B. (2021). KnowMore: an automated knowledge discovery tool for the FAIR SPARC datasets. https://doi.org/10.1101/2021.08.08.455581


DOI: doi:10.3389/fnins.2020.601479 [Originating Publication] 
Citation: Pelot, N. A., Goldhagen, G. B., Cariello, J. E., Musselman, E. D., Clissold, K. A., Ezzell, J. A., & Grill, W. M. (2020). Quantified Morphology of the Cervical and Subdiaphragmatic Vagus Nerves of Human, Pig, and Rat. Frontiers in Neuroscience, 14. https://doi.org/10.3389/fnins.2020.601479


DOI: doi:10.1101/2021.08.08.455581v1 [Citation] 
Citation: Delphine Planas, David Veyer, Artem Baidaliuk, Isabelle Staropoli, Florence Guivel-Benhassine, Maaran Michael Rajah, Cyril Planchais, Françoise Porrot, Nicolas Robillard, Julien Puech, Matthieu Prot, Floriane Gallais, Pierre Gantner, Aurélie Velay, Julien Le Guen, Najibi Kassis-Chikhani, Dhiaeddine Edriss, Laurent Belec, Aymeric Seve, Hélène Péré, Laura Courtellemont, Laurent Hocqueloux, Samira Fafi-Kremer, Thierry Prazuck, Hugo Mouquet, Timothée Bruel, Etienne Simon-Lorière, Felix A. Rey, Olivier Schwartz. Reduced sensitivity of infectious SARS-CoV-2 variant B.1.617.2 to monoclonal antibodies and sera from convalescent and vaccinated individuals. bioRxiv 2021.05.26.445838; doi: https://doi.org/10.1101/2021.05.26.445838 

Endorgan-specific Pseudorabies (PRV) infection in mouse kidney and liver

DOI: 10.26275/pvib-4jat Dataset ID: 165 Dataset Version: 1

Dataset citation: Huesing, C., Muenzberg, H., Derbenev, A., Zsombok, A., Burk, D., & Torres, H. (2021). Endorgan-specific Pseudorabies (PRV) infection in mouse kidney and liver (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/PVIB-4JAT

Cited by

DOI: doi:10.17504/protocols.io.bujanuie [Protocol] 
Citation: Huesing, C., Muenzberg, H., Zsombok, A., & Derbenev, A. (2021). Peripheral PRV injection - Kidney &amp;amp; Liver Protocol v1. https://doi.org/10.17504/protocols.io.bujanuie


DOI: doi:10.1152/ajpregu.00079.2021 [Originating Publication] 
Citation: Torres, H., Huesing, C., Burk, D. H., Molinas, A. J. R., Neuhuber, W. L., Berthoud, H.-R., Münzberg, H., Derbenev, A. V., & Zsombok, A. (2021). Sympathetic innervation of the mouse kidney and liver arising from prevertebral ganglia. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 321(3), R328–R337. https://doi.org/10.1152/ajpregu.00079.2021

Mapping of intrinsic cardiac nervous system (ICN) neurons in a 3D reconstructed rat heart

DOI: 10.26275/pb3l-251h Dataset ID: 37 Dataset Version: 3

Dataset citation: Leung, C., Chen, J., Moss, A., Tappan, S., Heal, M., Huffman, T., Farahani, N., Eisenman, L., Cheng, Z., Vadigepalli, R., & Schwaber, J. (2021). Mapping of intrinsic cardiac nervous system (ICN) neurons in a 3D reconstructed rat heart (Version 3) [Data set]. SPARC Consortium. https://doi.org/10.26275/PB3L-251H

Cited by

DOI: doi:10.17504/protocols.io.bdz5i786 [Protocol] 
Citation: Leung, C., Heal, M., Robbins, S., Moss, A., Monteith, C., & Tappan, S. (2020). Single-Cell ICN Neuron Mapping and 3D Heart Reconstruction with Tissue Mapper v1. https://doi.org/10.17504/protocols.io.bdz5i786


DOI: doi:10.1016/j.isci.2020.101140 [Originating Publication] 
Citation: Achanta, S., Gorky, J., Leung, C., Moss, A., Robbins, S., Eisenman, L., Chen, J., Tappan, S., Heal, M., Farahani, N., Huffman, T., England, S., Cheng, Z. (Jack), Vadigepalli, R., & Schwaber, J. S. (2020). A Comprehensive Integrated Anatomical and Molecular Atlas of Rat Intrinsic Cardiac Nervous System. IScience, 23(6), 101140. https://doi.org/10.1016/j.isci.2020.101140


DOI: doi:10.1016/j.isci.2021.102795 [Citation] 
Citation: Leung, C., Robbins, S., Moss, A., Heal, M., Osanlouy, M., Christie, R., Farahani, N., Monteith, C., Chen, J., Hunter, P., Tappan, S., Vadigepalli, R., Cheng, Z. (Jack), & Schwaber, J. S. (2021). 3D single cell scale anatomical map of sex-dependent variability of the rat intrinsic cardiac nervous system. IScience, 24(7), 102795. https://doi.org/10.1016/j.isci.2021.102795

Monosynaptic circuit mapping of iBAT (interscapular brown adipose tissues) in mice

DOI: 10.26275/do5j-enxl Dataset ID: 168 Dataset Version: 1

Dataset citation: Huesing, C., zhang, rui, & Muenzberg, H. (2021). Monosynaptic circuit mapping of iBAT (interscapular brown adipose tissues) in mice (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/DO5J-ENXL

Cited by

DOI: doi:10.17504/protocols.io.wzuff6w [Protocol] 
Citation: Huesing, C., Muenzberg, H., Burk, D., & Torres, H. (2019). iDISCO protocol for whole-mount immunostaining and volume imaging v1. https://doi.org/10.17504/protocols.io.wzuff6w


DOI: doi:10.17504/protocols.io.wz3ff8n [Protocol] 
Citation: Huesing, C., Torres, H., Burk, D., & Muenzberg, H. (2019). Light sheet microscopy v1. https://doi.org/10.17504/protocols.io.wz3ff8n


DOI: doi:10.17504/protocols.io.baamiac6 [Protocol] 
Citation: Huesing, C., Muenzberg, H., Zhang, R., Lee, N., Qualls-Creekmore, E., & Francois, M. (2019). Pseudorabies virus (PRV) injection into inguinal white adipose tissue v1. https://doi.org/10.17504/protocols.io.baamiac6

Effects of nodose ganglion blockade on gastric motility during cervical vagus nerve stimulation measured with magnetic resonance imaging in rats

DOI: 10.26275/t8he-z5uu Dataset ID: 169 Dataset Version: 1

Dataset citation: Lu, K.-H., Powley, T., Liu, Z., Jaffey, D., & Rajwa, B. (2021). Effects of nodose ganglion blockade on gastric motility during cervical vagus nerve stimulation measured with magnetic resonance imaging in rats (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/T8HE-Z5UU

Cited by

DOI: doi:10.17504/protocols.io.bawfifbn [Protocol] 
Citation: Lu, K.-H., Liu, Z., & Cao, J. (2019). Effects of Vagus Nerve Stimulation/Gastric Electrical Stimulation on Gastric Emptying and Motility Assessed with Magnetic Resonance Imaging v1. https://doi.org/10.17504/protocols.io.bawfifbn

iWAT (inguinal white adipose tissue) sympathetic innervation circuit pseudorabies viral tracing in reporter mice

DOI: 10.26275/mhq6-csy1 Dataset ID: 175 Dataset Version: 1

Dataset citation: Muenzberg, H., Berthoud, H.-R., Burk, D., Morrison, C. D., Yu, S., Qualls-Creekmore, E., François, M., zhang, rui, Huesing, C., Lee, N., Torres, H., & Saurage, C. (2021). iWAT (inguinal white adipose tissue) sympathetic innervation circuit pseudorabies viral tracing in reporter mice (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/MHQ6-CSY1

Cited by

DOI: doi:10.17504/protocols.io.wzuff6w [Protocol] 
Citation: Huesing, C., Muenzberg, H., Burk, D., & Torres, H. (2019). iDISCO protocol for whole-mount immunostaining and volume imaging v1. https://doi.org/10.17504/protocols.io.wzuff6w


DOI: doi:10.17504/protocols.io.wz3ff8n [Protocol] 
Citation: Huesing, C., Torres, H., Burk, D., & Muenzberg, H. (2019). Light sheet microscopy v1. https://doi.org/10.17504/protocols.io.wz3ff8n


DOI: doi:10.17504/protocols.io.baamiac6 [Protocol] 
Citation: Huesing, C., Muenzberg, H., Zhang, R., Lee, N., Qualls-Creekmore, E., & Francois, M. (2019). Pseudorabies virus (PRV) injection into inguinal white adipose tissue v1. https://doi.org/10.17504/protocols.io.baamiac6


DOI: doi:10.1002/cne.25031 [Originating Publication] 
Citation: Huesing, C., Qualls‐Creekmore, E., Lee, N., François, M., Torres, H., Zhang, R., Burk, D. H., Yu, S., Morrison, C. D., Berthoud, H., Neuhuber, W., & Münzberg, H. (2020). Sympathetic innervation of inguinal white adipose tissue in the mouse. Journal of Comparative Neurology, 529(7), 1465–1485. Portico. https://doi.org/10.1002/cne.25031

Intraneural recordings in rat vagus nerves using carbon fiber microelectrode arrays

DOI: 10.26275/j5wc-rwcr Dataset ID: 177 Dataset Version: 1

Dataset citation: Jiman, A., Ratze, D., Welle, E., Patel, P., Bottorff, E., Richie, J., Seymour, J., Chestek, C., & Bruns, T. (2021). Intraneural recordings in rat vagus nerves using carbon fiber microelectrode arrays (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/J5WC-RWCR

Cited by

DOI: doi:10.17504/protocols.io.bet2jeqe [Protocol] 
Citation: Jiman, A., Ratze, D., Welle, E., Patel, P., Richie, J., Bottorff, E., Seymour, J., Chestek, C., & Bruns, T. (2020). Intraneural Recordings in Rat Vagus Nerves Using Carbon Fiber Microelectrode Arrays v1. https://doi.org/10.17504/protocols.io.bet2jeqe


DOI: doi:10.1038/s41598-020-72512-7 [Citation] 
Citation: Jiman, A. A., Ratze, D. C., Welle, E. J., Patel, P. R., Richie, J. M., Bottorff, E. C., Seymour, J. P., Chestek, C. A., & Bruns, T. M. (2020). Multi-channel intraneural vagus nerve recordings with a novel high-density carbon fiber microelectrode array. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-72512-7

3D imaging of enteric neurons in mouse

DOI: 10.26275/9ffg-482d Dataset ID: 178 Dataset Version: 1

Dataset citation: Howard, M. (2021). 3D imaging of enteric neurons in mouse (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/9FFG-482D

Cited by

DOI: doi:10.17504/protocols.io.bwuapese [Protocol] 
Citation: Howard, M., & Kalinoski, A. (2021). Wholemount immunolabeling of mouse gut tissue v1. https://doi.org/10.17504/protocols.io.bwuapese


DOI: doi:10.1016/j.jcmgh.2021.08.016 [Originating Publication] 
Citation: Nestor-Kalinoski, A., Smith-Edwards, K. M., Meerschaert, K., Margiotta, J. F., Rajwa, B., Davis, B. M., & Howard, M. J. (2022). Unique Neural Circuit Connectivity of Mouse Proximal, Middle, and Distal Colon Defines Regional Colonic Motor Patterns. Cellular and Molecular Gastroenterology and Hepatology, 13(1), 309-337.e3. https://doi.org/10.1016/j.jcmgh.2021.08.016

Spatially tracked single-cell transcriptomics map of neuronal networks in the intrinsic cardiac nervous system

DOI: 10.26275/hrww-enzr Dataset ID: 115 Dataset Version: 2

Dataset citation: Vadigepalli, R., Schwaber, J., Robbins, S., Kuttippurathu, L., Achanta, S., Moss, A., & Heal, M. (2021). Spatially tracked single-cell transcriptomics map of neuronal networks in the intrinsic cardiac nervous system (Version 2) [Data set]. SPARC Consortium. https://doi.org/10.26275/HRWW-ENZR

Cited by

DOI: doi:10.21203/rs.3.pex-928/v1 [Citation] 
Citation: Robbins, S., Vadigepalli, R., & Schwaber, J. (2021). Cryosectioning, block face imaging and Nissl staining fluorescently labeled pig heart. https://doi.org/10.21203/rs.3.pex-928/v1


DOI: doi:10.21203/rs.3.pex-927/v1 [Citation] 
Citation: Robbins, S., Achanta, S., & Vadigepalli, R. (2021). Laser Capture Microdissection (LCM) and 3D Sample Tracking Protocol. https://doi.org/10.21203/rs.3.pex-927/v1


DOI: doi:10.21203/rs.3.pex-962/v1 [Citation] 
Citation: Kuttippurathu, L., Moss, A., & Vadigepalli, R. (2021). Single Cell scale RNA-seq Analysis Protocol to analyze Smart-3SEQ data from RAGP neurons of pig heart. https://doi.org/10.21203/rs.3.pex-962/v1


DOI: doi:10.21203/rs.3.pex-919/v1 [Citation] 
Citation: Achanta, S., & Vadigepalli, R. (2021). Single cell high-throughput qRT-PCR protocol. https://doi.org/10.21203/rs.3.pex-919/v1


DOI: doi:10.21203/rs.3.pex-922/v1 [Citation] 
Citation: Robbins, S., Vadigepalli, R., & Schwaber, J. (2021). Single-Cell Mapping and 3D Tissue Reconstruction using Cryosection-derived Images and Tissue Mapper software. https://doi.org/10.21203/rs.3.pex-922/v1


DOI: doi:10.1016/j.isci.2021.102713 [Citation] 
Citation: Moss, A., Robbins, S., Achanta, S., Kuttippurathu, L., Turick, S., Nieves, S., Hanna, P., Smith, E. H., Hoover, D. B., Chen, J., Cheng, Z. (Jack), Ardell, J. L., Shivkumar, K., Schwaber, J. S., & Vadigepalli, R. (2021). A single cell transcriptomics map of paracrine networks in the intrinsic cardiac nervous system. IScience, 24(7), 102713. https://doi.org/10.1016/j.isci.2021.102713

Spatially tracked single-neuron transcriptomics of a female porcine right atrial ganglionic plexus (RAGP)

DOI: 10.26275/slsc-eahw Dataset ID: 117 Dataset Version: 2

Dataset citation: Moss, A., Robbins, S., Achanta, S., Schwaber, J., & Vadigepalli, R. (2021). Spatially tracked single-neuron transcriptomics of a female porcine right atrial ganglionic plexus (RAGP) (Version 2) [Data set]. SPARC Consortium. https://doi.org/10.26275/SLSC-EAHW

Cited by

DOI: doi:10.21203/rs.3.pex-922/v1 [Citation] 
Citation: Robbins, S., Vadigepalli, R., & Schwaber, J. (2021). Single-Cell Mapping and 3D Tissue Reconstruction using Cryosection-derived Images and Tissue Mapper software. https://doi.org/10.21203/rs.3.pex-922/v1


DOI: doi:10.1016/j.isci.2021.102713 [Citation] 
Citation: Moss, A., Robbins, S., Achanta, S., Kuttippurathu, L., Turick, S., Nieves, S., Hanna, P., Smith, E. H., Hoover, D. B., Chen, J., Cheng, Z. (Jack), Ardell, J. L., Shivkumar, K., Schwaber, J. S., & Vadigepalli, R. (2021). A single cell transcriptomics map of paracrine networks in the intrinsic cardiac nervous system. IScience, 24(7), 102713. https://doi.org/10.1016/j.isci.2021.102713

Spatially tracked single-neuron transcriptomics of a male porcine right atrial ganglionic plexus (RAGP)

DOI: 10.26275/c14g-2czn Dataset ID: 118 Dataset Version: 2

Dataset citation: Moss, A., Robbins, S., Achanta, S., Schwaber, J., & Vadigepalli, R. (2021). Spatially tracked single-neuron transcriptomics of a male porcine right atrial ganglionic plexus (RAGP) (Version 2) [Data set]. SPARC Consortium. https://doi.org/10.26275/C14G-2CZN

Cited by

DOI: doi:10.21203/rs.3.pex-922/v1 [Citation] 
Citation: Robbins, S., Vadigepalli, R., & Schwaber, J. (2021). Single-Cell Mapping and 3D Tissue Reconstruction using Cryosection-derived Images and Tissue Mapper software. https://doi.org/10.21203/rs.3.pex-922/v1


DOI: doi:10.1016/j.isci.2021.102713 [Citation] 
Citation: Moss, A., Robbins, S., Achanta, S., Kuttippurathu, L., Turick, S., Nieves, S., Hanna, P., Smith, E. H., Hoover, D. B., Chen, J., Cheng, Z. (Jack), Ardell, J. L., Shivkumar, K., Schwaber, J. S., & Vadigepalli, R. (2021). A single cell transcriptomics map of paracrine networks in the intrinsic cardiac nervous system. IScience, 24(7), 102713. https://doi.org/10.1016/j.isci.2021.102713

Effects of subcutaneous nerve stimulation with blindly inserted electrodes on ventricular rate control in a canine model of persistent atrial fibrillation

DOI: 10.26275/fsfw-dmfd Dataset ID: 181 Dataset Version: 1

Dataset citation: Kusayama, T., Yuan, Y., Wan, J., Xiao, L., Li, X., Shen, C., Fishbein, M., Everett, T., & Chen, P.-S. (2021). Effects of subcutaneous nerve stimulation with blindly inserted electrodes on ventricular rate control in a canine model of persistent atrial fibrillation (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/FSFW-DMFD

Cited by

DOI: doi:10.17504/protocols.io.bz5wp87e [Protocol] 
Citation: Kusayama, T., Wan, J., Yuan, Y., Liu, X., Li, X., Shen, C., C. Fishbein, M., H. Everett IV, T., & not provided, P.-Sheng. C. (2021). Subcutaneous nerve stimulation in canine model of persistent atrial fibrillation v1. https://doi.org/10.17504/protocols.io.bz5wp87e


DOI: doi:10.1016/j.hrthm.2020.09.009 [Originating Publication] 
Citation: Kusayama, T., Wan, J., Yuan, Y., Liu, X., Li, X., Shen, C., Fishbein, M. C., Everett, T. H., & Chen, P.-S. (2021). Effects of subcutaneous nerve stimulation with blindly inserted electrodes on ventricular rate control in a canine model of persistent atrial fibrillation. Heart Rhythm, 18(2), 261–270. https://doi.org/10.1016/j.hrthm.2020.09.009

Acute effects of efferent and afferent vagus nerve stimulation (VNS) on neural activity accessed with functional magnetic resonance imaging (fMRI) in rats (Part 2)

DOI: 10.26275/eoqv-ozxc Dataset ID: 183 Dataset Version: 1

Dataset citation: Cao, J., Powley, T., Liu, Z., Jaffey, D., & Rajwa, B. (2021). Acute effects of efferent and afferent vagus nerve stimulation (VNS) on neural activity accessed with functional magnetic resonance imaging (fMRI) in rats (Part 2) (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/EOQV-OZXC

Cited by

DOI: doi:10.17504/protocols.io.bciwiufe [Protocol] 
Citation: Cao, J., Lu, K.-H., Wang, X., & Liu, Z. (2020). Effects of Vagus Nerve Stimulation/Gastric Electrical Stimulation on Brain Neural Activity Assessed with Magnetic Resonance Imaging and electrophysiology v1. https://doi.org/10.17504/protocols.io.bciwiufe

Acute effects of gastric electrical stimulation (GES) settings on neural activity accessed with functional magnetic resonance maging (fMRI) in rats

DOI: 10.26275/ypwk-0xbo Dataset ID: 185 Dataset Version: 1

Dataset citation: Cao, J., Powley, T., Liu, Z., Jaffey, D., & Rajwa, B. (2021). Acute effects of gastric electrical stimulation (GES) settings on neural activity accessed with functional magnetic resonance maging (fMRI) in rats (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/YPWK-0XBO

Cited by

DOI: doi:10.17504/protocols.io.bciwiufe [Protocol] 
Citation: Cao, J., Lu, K.-H., Wang, X., & Liu, Z. (2020). Effects of Vagus Nerve Stimulation/Gastric Electrical Stimulation on Brain Neural Activity Assessed with Magnetic Resonance Imaging and electrophysiology v1. https://doi.org/10.17504/protocols.io.bciwiufe

Triaxial mechanical testing of dog colon segments

DOI: 10.26275/z5pm-vqst Dataset ID: 142 Dataset Version: 2

Dataset Citation: Patel, B., Wang, Y., Kassab, G., & Gregersen, H. (2021). Triaxial mechanical testing of dog colon segments (Version 2) [Data set]. SPARC Consortium. https://doi.org/10.26275/Z5PM-VQST

Cited by

DOI: doi:10.17504/protocols.io.bp7qmrmw [Protocol] 
Citation: Patel, B., & Wang, Y. (2020). Triaxial mechanical testing of dog colon samples v1. https://doi.org/10.17504/protocols.io.bp7qmrmw

Simulations of pelvic and vagus neural interface anatomy-dependent stimulus and recording properties

DOI: 10.26275/z61u-2tcs Dataset ID: 188 Dataset Version: 1

Dataset citation: Eiber, C. D., Payne, S., Osborne, P., Keast, J. R., & Fallon, J. (2021). Simulations of pelvic and vagus neural interface anatomy-dependent stimulus and recording properties (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/Z61U-2TCS

Cited by

DOI: doi:10.1088/1741-2552/ac36e2 [Originating Publication] 
Citation: Eiber, C. D., Payne, S. C., Biscola, N. P., Havton, L. A., Keast, J. R., Osborne, P. B., & Fallon, J. B. (2021). Computational modelling of nerve stimulation and recording with peripheral visceral neural interfaces. Journal of Neural Engineering, 18(6), 066020. https://doi.org/10.1088/1741-2552/ac36e2

Identification of lung innervating sensory neurons and their target specificity in mouse (1)

DOI: 10.26275/e6vk-2lky Dataset ID: 189 Dataset Version: 1

Dataset citation: Barr, J., Verheyden, J., & Sun, X. (2021). Identification of lung innervating sensory neurons and their target specificity in mouse (1) (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/E6VK-2LKY

Cited by

DOI: doi:10.17504/protocols.io.b2gvqbw6 [Protocol] 
Citation: Barr, J., Verheyden, J., & Sun, X. (2021). Protocol for CUBIC Clearing and Whole Mount Imaging of Mouse Lung Lobes v1. https://doi.org/10.17504/protocols.io.b2gvqbw6


DOI: doi:10.1152/ajplung.00376.2021 [Originating Publication] 
Citation: Su, Y., Barr, J., Jaquish, A., Xu, J., Verheyden, J. M., & Sun, X. (2022). Identification of lung innervating sensory neurons and their target specificity. American Journal of Physiology-Lung Cellular and Molecular Physiology, 322(1), L50–L63. https://doi.org/10.1152/ajplung.00376.2021

Safety testing of the Fecobionics device

DOI: 10.26275/ts6z-z80x Dataset ID: 205 Dataset Version: 1

Dataset citation: Wang, Y., Patel, B., Kassab, G., & Gregersen, H. (2021). Safety testing of the Fecobionics device (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/TS6Z-Z80X

Cited by

DOI: doi:10.17504/protocols.io.9nih5ce [Protocol] 
Citation: Wang, Y., Kassab, G., Gregersen, H., & Bhavesh, P. (2019). Safety Study of Wireless Fecobionics Device v1. https://doi.org/10.17504/protocols.io.9nih5ce

Recording of electrically evoked neural activity and bladder pressure responses in awake rats chronically implanted with a pelvic nerve array

DOI: 10.26275/kkmb-vun5 Dataset ID: 206 Dataset Version: 1

Dataset citation: Payne, S., Eiber, C. D., Wiedmann, N., Wong, A. W., Senn, P., Osborne, P., Keast, J. R., & Fallon, J. (2021). Recording of electrically evoked neural activity and bladder pressure responses in awake rats chronically implanted with a pelvic nerve array (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/KKMB-VUN5

Cited by

DOI: doi:10.17504/protocols.io.bgrmjv46 [Protocol] 
Citation: B Fallon, J., Payne, S., B Osborne, P., & R Keast, J. (2020). Pelvic nerve implantation, testing and processing in awake rats v1. https://doi.org/10.17504/protocols.io.bgrmjv46


DOI: doi:10.3389/fnins.2020.619275 [Originating Publication] 
Citation: Payne, S. C., Wiedmann, N. M., Eiber, C. D., Wong, A. W., Senn, P., Osborne, P. B., Keast, J. R., & Fallon, J. B. (2020). Recording of Electrically Evoked Neural Activity and Bladder Pressure Responses in Awake Rats Chronically Implanted With a Pelvic Nerve Array. Frontiers in Neuroscience, 14. https://doi.org/10.3389/fnins.2020.619275

Identification of peripheral neural circuits that regulate heart rate using optogenetic and viral vector strategies part (2)

DOI: 10.26275/s2vo-pje2 Dataset ID: 204 Dataset Version: 1

Dataset citation: Rajendran, P., Challis, R., Fowlkes, C., Hanna, P., Tompkins, J. D., Hiyari, S., Muenzberg, H., Ardell, J., Salama, G., Gradinaru, V., & Shivkumar, K. (2021). Identification of peripheral neural circuits that regulate heart rate using optogenetic and viral vector strategies part (2) (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/S2VO-PJE2

Cited by

DOI: doi:10.17504/protocols.io.x3sfqne [Protocol] 
Citation: Rajendran, P. (2019). iDISCO clearing of mouse heart v1. https://doi.org/10.17504/protocols.io.x3sfqne


DOI: doi:10.1038/s41467-019-09770-1 [Originating Publication] 
Citation: Rajendran, P. S., Challis, R. C., Fowlkes, C. C., Hanna, P., Tompkins, J. D., Jordan, M. C., Hiyari, S., Gabris-Weber, B. A., Greenbaum, A., Chan, K. Y., Deverman, B. E., Münzberg, H., Ardell, J. L., Salama, G., Gradinaru, V., & Shivkumar, K. (2019). Identification of peripheral neural circuits that regulate heart rate using optogenetic and viral vector strategies. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-09770-1

Cardioneural recordings using floating multi-channel plunge micro-electrodes in pigs

DOI: 10.26275/unth-geqw Dataset ID: 26 Dataset Version: 4

Dataset citation: Vaseghi, M., Ardell, J. L., & Shivkumar, K. (2021). Cardioneural recordings using floating multi-channel plunge micro-electrodes in pigs (Version 4) [Data set]. SPARC Consortium. https://doi.org/10.26275/UNTH-GEQW

Cited by

DOI: doi:10.17504/protocols.io.2ncgdaw [Protocol] 
Citation: Vaseghi, M., & Ardell, J. (2019). Pig Nodose Ganglion protocol v1. https://doi.org/10.17504/protocols.io.2ncgdaw


DOI: doi:10.17504/protocols.io.2i4gcgw [Protocol] 
Citation: Ardell, J. (2019). Pig-Neural recording and analysis-workflow v1. https://doi.org/10.17504/protocols.io.2i4gcgw

RNA sequencing reveals novel transcripts from sympathetic stellate ganglia during cardiac sympathetic hyperactivity in rats

DOI: 10.26275/zwcw-v2re Dataset ID: 139 Dataset Version: 2

Dataset citation: Davis, H., Bardsley, E., & Paterson, D. (2021). RNA sequencing reveals novel transcripts from sympathetic stellate ganglia during cardiac sympathetic hyperactivity in rats (Version 2) [Data set]. SPARC Consortium. https://doi.org/10.26275/ZWCW-V2RE

Cited by

DOI: doi:10.1038/s41598-018-26651-7 [Originating Publication] 
Citation: Bardsley, E. N., Davis, H., Ajijola, O. A., Buckler, K. J., Ardell, J. L., Shivkumar, K., & Paterson, D. J. (2018). RNA Sequencing Reveals Novel Transcripts from Sympathetic Stellate Ganglia During Cardiac Sympathetic Hyperactivity. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-26651-7

ViNERS (Visceral Nerve Ensemble Recording & Stimulation) peripheral neural interface modeling environment

DOI: 10.26275/chfk-eugm Dataset ID: 207 Dataset Version: 1

Dataset citation: Eiber, C. D., Fallon, J., Osborne, P., & Keast, J. R. (2021). ViNERS (Visceral Nerve Ensemble Recording & Stimulation) peripheral neural interface modeling environment (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/CHFK-EUGM

Cited by

DOI: doi:10.1109/EMBC44109.2020.9175921 [Originating Publication] 
Citation: Eiber, C. D., Keast, J. R., & Osborne, P. B. (2020). Simulating bidirectional peripheral neural interfaces in EIDORS. 2020 42nd Annual International Conference of the IEEE Engineering in Medicine &amp; Biology Society (EMBC). https://doi.org/10.1109/embc44109.2020.9175921


DOI: doi:10.1088/1741-2552/ac36e2 [Citation] 
Citation: Eiber, C. D., Payne, S. C., Biscola, N. P., Havton, L. A., Keast, J. R., Osborne, P. B., & Fallon, J. B. (2021). Computational modelling of nerve stimulation and recording with peripheral visceral neural interfaces. Journal of Neural Engineering, 18(6), 066020. https://doi.org/10.1088/1741-2552/ac36e2

Quantitative analysis of enteric neurons containing choline acetyltransferase and nitric oxide synthase immunoreactivities in the submucosal and myenteric plexuses of the porcine colon

DOI: 10.26275/g3xc-oztw Dataset ID: 209 Dataset Version: 1

Dataset citation: Cabanillas, L., Mulugeta, M., Mazzoni, M., Larauche, M., Sternini, C., Caremoli, F., de los Santos, J., Clavenzani, P., & De Giorgio, R. (2022). Quantitative analysis of enteric neurons containing choline acetyltransferase and nitric oxide synthase immunoreactivities in the submucosal and myenteric plexuses of the porcine colon (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/G3XC-OZTW

Cited by

DOI: doi:10.17504/protocols.io.bfqmjmu6 [Protocol] 
Citation: Mazzoni, M., Caremoli, F., Cabanillas, L., de los Santos, J., Million, M., Larauche, M., Clavenzani, P., De Giorgio, R., & Sternini, C. (2020). Quantitative analysis of enteric neurons containing choline acetyltransferase and nitric oxide synthase immunoreactivities in the submucosal and myenteric plexuses of the porcine colon v1. https://doi.org/10.17504/protocols.io.bfqmjmu6


DOI: doi:10.1007/s00441-020-03286-7 [Originating Publication] 
Citation: Mazzoni, M., Caremoli, F., Cabanillas, L., de los Santos, J., Million, M., Larauche, M., Clavenzani, P., De Giorgio, R., & Sternini, C. (2020). Quantitative analysis of enteric neurons containing choline acetyltransferase and nitric oxide synthase immunoreactivities in the submucosal and myenteric plexuses of the porcine colon. Cell and Tissue Research, 383(2), 645–654. https://doi.org/10.1007/s00441-020-03286-7

Acute effects of gastric electrical stimulation settings on gastric motility assessed with magnetic resonance imaging in rats

DOI: 10.26275/tbuz-s6gu Dataset ID: 210 Dataset Version: 1

Dataset citation: Lu, K.-H., Rajwa, B., Jaffey, D., Powley, T., & Liu, Z. (2021). Acute effects of gastric electrical stimulation settings on gastric motility assessed with magnetic resonance imaging in rats (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/TBUZ-S6GU

Cited by

DOI: doi:10.17504/protocols.io.bawfifbn [Protocol] 
Citation: Lu, K.-H., Liu, Z., & Cao, J. (2019). Effects of Vagus Nerve Stimulation/Gastric Electrical Stimulation on Gastric Emptying and Motility Assessed with Magnetic Resonance Imaging v1. https://doi.org/10.17504/protocols.io.bawfifbn

Acute effects of efferent and afferent vagus nerve stimulation (VNS) on neural activity accessed with functional magnetic resonance imaging (fMRI) in rats

DOI: 10.26275/9uqz-zwnh Dataset ID: 180 Dataset Version: 2

Dataset citation: Cao, J., Jaffey, D., Rajwa, B., Powley, T., & Liu, Z. (2022). Acute effects of efferent and afferent vagus nerve stimulation (VNS) on neural activity accessed with functional magnetic resonance imaging (fMRI) in rats (Version 2) [Data set]. SPARC Consortium. https://doi.org/10.26275/9UQZ-ZWNH

Cited by

DOI: doi:10.17504/protocols.io.bciwiufe [Protocol] 
Citation: Cao, J., Lu, K.-H., Wang, X., & Liu, Z. (2020). Effects of Vagus Nerve Stimulation/Gastric Electrical Stimulation on Brain Neural Activity Assessed with Magnetic Resonance Imaging and electrophysiology v1. https://doi.org/10.17504/protocols.io.bciwiufe

Acute effects of vagus nerve stimulation (VNS) settings on neural activity in the nucleus of solitary tract (NTS) in rats

DOI: 10.26275/ih2m-pphy Dataset ID: 211 Dataset Version: 1

Dataset citation: Cao, J., Jaffey, D., Rajwa, B., Powley, T., & Liu, Z. (2021). Acute effects of vagus nerve stimulation (VNS) settings on neural activity in the nucleus of solitary tract (NTS) in rats (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/IH2M-PPHY

Cited by

DOI: doi:10.17504/protocols.io.bciwiufe [Protocol] 
Citation: Cao, J., Lu, K.-H., Wang, X., & Liu, Z. (2020). Effects of Vagus Nerve Stimulation/Gastric Electrical Stimulation on Brain Neural Activity Assessed with Magnetic Resonance Imaging and electrophysiology v1. https://doi.org/10.17504/protocols.io.bciwiufe

Acute Wired Colonic Monitor of Conscious Activity (ColoMOCA) implantation in pig bowel

DOI: 10.26275/nc2a-aok9 Dataset ID: 114 Dataset Version: 2

Dataset citation: Damaser, M., Bourbeau, D., Majerus, S., McAdams, I., Yang, J., Rietsch, A., Hanzlicek, B., & Smiley, A. (2022). Acute Wired Colonic Monitor of Conscious Activity (ColoMOCA) implantation in pig bowel (Version 2) [Data set]. SPARC Consortium. https://doi.org/10.26275/NC2A-AOK9

Cited by

DOI: doi:10.17504/protocols.io.bfxbjpin [Protocol] 
Citation: Bourbeau, D., Hanzlicek, B., & Damaser, M. (2020). SPARC Pig1 acute wired ColoMOCA implantation v1. https://doi.org/10.17504/protocols.io.bfxbjpin


DOI: doi:10.17504/protocols.io.bfxgjpjw [Protocol] 
Citation: Hanzlicek, B., Bourbeau, D., & Damaser, M. (2020). SPARC Pig2 acute wired ColoMOCA implantation v1. https://doi.org/10.17504/protocols.io.bfxgjpjw

Sympathetic nerve stimulation of mouse and rabbit hearts

DOI: 10.26275/lok5-wje6 Dataset ID: 212 Dataset Version: 1

Dataset citation: Ripplinger, C., Grandi, E., Wang, L., & Morotti, S. (2022). Sympathetic nerve stimulation of mouse and rabbit hearts (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/LOK5-WJE6

Cited by

DOI: doi:10.1113/JP278016 [Originating Publication] 
Citation: Wang, L., Morotti, S., Tapa, S., Francis Stuart, S. D., Jiang, Y., Wang, Z., Myles, R. C., Brack, K. E., Ng, G. A., Bers, D. M., Grandi, E., & Ripplinger, C. M. (2019). Different paths, same destination: divergent action potential responses produce conserved cardiac fight‐or‐flight response in mouse and rabbit hearts. The Journal of Physiology, 597(15), 3867–3883. Portico. https://doi.org/10.1113/jp278016

Acute wired Urological Monitor of Conscious Activity (UroMOCA) implantation in feline bladder

DOI: 10.26275/nttj-jztd Dataset ID: 132 Dataset Version: 2

Dataset citation: Damaser, M., Bourbeau, D., Majerus, S., McAdams, I., Yang, J., Deng, K., & Rietsch, A. (2022). Acute wired Urological Monitor of Conscious Activity (UroMOCA) implantation in feline bladder (Version 2) [Data set]. SPARC Consortium. https://doi.org/10.26275/NTTJ-JZTD

Cited by

DOI: doi:10.17504/protocols.io.bf2kjqcw [Protocol] 
Citation: Rietsch, A., Hanzlicek, B., Damaser, M., & Bourbeau, D. (2020). SPARC Cat acute UroMOCA implantation v1. https://doi.org/10.17504/protocols.io.bf2kjqcw


DOI: doi:10.17504/protocols.io.bf2pjqdn [Protocol] 
Citation: Hanzlicek, B., Abelson, B., Damaser, M., & Bourbeau, D. (2020). SPARC Cat acute UroMOCA implantation surgery v1. https://doi.org/10.17504/protocols.io.bf2pjqdn

Public timeseries test

DOI: 10.26275/rluc-bpyn Dataset ID: 213 Dataset Version: 1

Dataset citation: Boehme, B. (2022). Public timeseries test (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/RLUC-BPYN

Cited by

DOI: doi:10.17504/protocols.io.bf2kjqcw [Protocol] 
Citation: Rietsch, A., Hanzlicek, B., Damaser, M., & Bourbeau, D. (2020). SPARC Cat acute UroMOCA implantation v1. https://doi.org/10.17504/protocols.io.bf2kjqcw


DOI: doi:10.17504/protocols.io.bf2pjqdn [Protocol] 
Citation: Hanzlicek, B., Abelson, B., Damaser, M., & Bourbeau, D. (2020). SPARC Cat acute UroMOCA implantation surgery v1. https://doi.org/10.17504/protocols.io.bf2pjqdn

Influence of acute celiac branch of abdominal vagus nerve stimulation on colonic motility in anesthetized male Yucatan minipigs

DOI: 10.26275/juih-r0ly Dataset ID: 150 Dataset Version: 3

Dataset citation: Larauche, M., Wang, Y., Wang, P.-M., Dubrovsky, G., Lo, Y.-K., Hsiang, I., Dunn, J., Liu, W., Tache, Y., & Mulugeta, M. (2022). Influence of acute celiac branch of abdominal vagus nerve stimulation on colonic motility in anesthetized male Yucatan minipigs (Version 3) [Data set]. SPARC Consortium. https://doi.org/10.26275/JUIH-R0LY

Cited by

DOI: doi:10.17504/protocols.io.3rmgm46 [Protocol] 
Citation: Larauche, M., Wang, Y., Wang, P.-M., Dunn, J., Liu, W., & Million, M. (2019). Tache_Mulugeta_OT2OD024899_Colon tissue electrical stimulation and colonic motility measurements v1. https://doi.org/10.17504/protocols.io.3rmgm46


DOI: doi:10.1111/nmo.13925 [Originating Publication] 
Citation: Larauche, M., Wang, Y., Wang, P., Dubrovsky, G., Lo, Y., Hsiang, E., Dunn, J. C. Y., Taché, Y., Liu, W., & Million, M. (2020). The effect of colonic tissue electrical stimulation and celiac branch of the abdominal vagus nerve neuromodulation on colonic motility in anesthetized pigs. Neurogastroenterology &amp; Motility, 32(11). Portico. https://doi.org/10.1111/nmo.13925

Influence of acute thoracolumbar root nerves electrical stimulation on colonic motility in anesthetized male Yucatan minipigs

DOI: 10.26275/hkxi-timl Dataset ID: 149 Dataset Version: 2

Dataset citation: Larauche, M., Wang, Y., Chen, Y.-P., Liu, W., & Mulugeta, M. (2022). Influence of acute thoracolumbar root nerves electrical stimulation on colonic motility in anesthetized male Yucatan minipigs (Version 2) [Data set]. SPARC Consortium. https://doi.org/10.26275/HKXI-TIML

Cited by

DOI: doi:10.17504/protocols.io.3rmgm46 [Protocol] 
Citation: Larauche, M., Wang, Y., Wang, P.-M., Dunn, J., Liu, W., & Million, M. (2019). Tache_Mulugeta_OT2OD024899_Colon tissue electrical stimulation and colonic motility measurements v1. https://doi.org/10.17504/protocols.io.3rmgm46


DOI: doi:10.1111/nmo.13925 [Originating Publication] 
Citation: Larauche, M., Wang, Y., Wang, P., Dubrovsky, G., Lo, Y., Hsiang, E., Dunn, J. C. Y., Taché, Y., Liu, W., & Million, M. (2020). The effect of colonic tissue electrical stimulation and celiac branch of the abdominal vagus nerve neuromodulation on colonic motility in anesthetized pigs. Neurogastroenterology &amp; Motility, 32(11). Portico. https://doi.org/10.1111/nmo.13925

Influence of direct colon tissue electrical stimulation on colonic motility in anesthetized male Yucatan minipig

DOI: 10.26275/up27-ibcr Dataset ID: 34 Dataset Version: 5

Dataset citation: Larauche, M., Wang, Y., Wang, P.-M., Dubrovsky, G., Lo, Y.-K., Hsiang, I., Dunn, J., Liu, W., Tache, Y., & Mulugeta, M. (2022). Influence of direct colon tissue electrical stimulation on colonic motility in anesthetized male Yucatan minipig (Version 5) [Data set]. SPARC Consortium. https://doi.org/10.26275/UP27-IBCR

Cited by

DOI: doi:10.17504/protocols.io.3rmgm46 [Protocol] 
Citation: Larauche, M., Wang, Y., Wang, P.-M., Dunn, J., Liu, W., & Million, M. (2019). Tache_Mulugeta_OT2OD024899_Colon tissue electrical stimulation and colonic motility measurements v1. https://doi.org/10.17504/protocols.io.3rmgm46


DOI: doi:10.1111/nmo.13925 [Originating Publication] 
Citation: Larauche, M., Wang, Y., Wang, P., Dubrovsky, G., Lo, Y., Hsiang, E., Dunn, J. C. Y., Taché, Y., Liu, W., & Million, M. (2020). The effect of colonic tissue electrical stimulation and celiac branch of the abdominal vagus nerve neuromodulation on colonic motility in anesthetized pigs. Neurogastroenterology &amp; Motility, 32(11). Portico. https://doi.org/10.1111/nmo.13925

Functional mapping with lumbosacral epidural stimulation for restoration of bladder function after spinal cord injury in rats

DOI: 10.26275/gvzt-oeti Dataset ID: 130 Dataset Version: 2

Dataset citation: Hubscher, C., Harkema, S., Wagers, S., Mohamed, A., El-Baz, A., Ugiliweneza, B., Herrity, A., Johnson, K., Armstrong, J., Fell, J., Chen, Y., Zdunowski, S., Gallahar, A., Hargitt, J., Dougherty, S., Wade, S., Wyles, E., Hoey, R., Medina Aguiñaga, D., … Chang, H. (2022). Functional mapping with lumbosacral epidural stimulation for restoration of bladder function after spinal cord injury in rats (Version 2) [Data set]. SPARC Consortium. https://doi.org/10.26275/GVZT-OETI

Cited by

DOI: doi:10.17504/protocols.io.w6hfhb6 [Protocol] 
Citation: Hubscher, C., & Hoey, R. (2019). Epidural stimulation mapping protocol v1. https://doi.org/10.17504/protocols.io.w6hfhb6


DOI: doi:10.1038/s41598-021-81822-3 [Originating Publication] 
Citation: Hoey, R. F., Medina-Aguiñaga, D., Khalifa, F., Ugiliweneza, B., Zdunowski, S., Fell, J., Naglah, A., El-Baz, A. S., Herrity, A. N., Harkema, S. J., & Hubscher, C. H. (2021). Bladder and bowel responses to lumbosacral epidural stimulation in uninjured and transected anesthetized rats. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-81822-3

Transcriptional diversity of single neurons in the porcine right atrial ganglionic plexus (RAGP)

DOI: 10.26275/z6jn-j5tx Dataset ID: 119 Dataset Version: 2

Dataset citation: Moss, A., Robbins, S., Achanta, S., Nieves, S., Turick, S., Schwaber, J., & Vadigepalli, R. (2022). Transcriptional diversity of single neurons in the porcine right atrial ganglionic plexus (RAGP) (Version 2) [Data set]. SPARC Consortium. https://doi.org/10.26275/Z6JN-J5TX

Cited by

DOI: doi:10.21203/rs.3.pex-927/v1 [Citation] 
Citation: Robbins, S., Achanta, S., & Vadigepalli, R. (2021). Laser Capture Microdissection (LCM) and 3D Sample Tracking Protocol. https://doi.org/10.21203/rs.3.pex-927/v1

Antibodies tested in the colon - Pig

DOI: 10.26275/of13-iokw Dataset ID: 216 Dataset Version: 1

Dataset citation: Yuan , P.-Q., Mazzuoli-Weber, G., Schemann, M., Sternini, C., Bains, M., & Tache, Y. (2022). Antibodies tested in the colon - Pig (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/OF13-IOKW

Cited by

DOI: doi:10.17504/protocols.io.4r9gv96 [Protocol] 
Citation: pq Yuan, P.-Q., & Taché, Y. (2019). Tache_Yuan_OT2OD024899_CLARITYAnd3DImagingOfColonicENSintheMouseAndPig_1_2019-Pig_Protocol v1. https://doi.org/10.17504/protocols.io.4r9gv96


DOI: doi:10.17504/protocols.io.bfqmjmu6 [Protocol] 
Citation: Mazzoni, M., Caremoli, F., Cabanillas, L., de los Santos, J., Million, M., Larauche, M., Clavenzani, P., De Giorgio, R., & Sternini, C. (2020). Quantitative analysis of enteric neurons containing choline acetyltransferase and nitric oxide synthase immunoreactivities in the submucosal and myenteric plexuses of the porcine colon v1. https://doi.org/10.17504/protocols.io.bfqmjmu6


DOI: doi:10.17504/protocols.io.b4qrqvv6 [Protocol] 
Citation: Mazzuoli-Weber, G., Schemann, M., Elfers, K., Kuch, B., & Hoppe, S. (2022). Immunohistochemistry of porcine enteric neurons v1. https://doi.org/10.17504/protocols.io.b4qrqvv6

Safety testing of predicate device for Fecobionics

DOI: 10.26275/dhbx-w17y Dataset ID: 187 Dataset Version: 2

Dataset citation: Wang, Y., Patel, B., Kassab, G., & Gregersen, H. (2022). Safety testing of predicate device for Fecobionics (Version 2) [Data set]. SPARC Consortium. https://doi.org/10.26275/DHBX-W17Y

Cited by

DOI: doi:10.17504/protocols.io.b4u8qwzw [Protocol] 
Citation: Wang, Y., Kassab, G., Gregersen, H., & Patel, B. (2022). Staining Protocols for Safety Study of Wireless Fecobionics Device v1. https://doi.org/10.17504/protocols.io.b4u8qwzw

Single nucleus RNAseq of nodose ganglia in mice

DOI: 10.26275/wucy-ljuk Dataset ID: 220 Dataset Version: 1

Dataset citation: Verheyden, J., Sun, X., Xu, Y., & Zhao, S. (2022). Single nucleus RNAseq of nodose ganglia in mice (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/WUCY-LJUK

Cited by

DOI: doi:10.17504/protocols.io.v72e9qe [Protocol] 
Citation: Preissl, S., Verheyden, J., & Sun, X. (2018). Single Nucleus RNAseq Sample Prep from Nodose Ganglia v1. https://doi.org/10.17504/protocols.io.v72e9qe

Fabbri-based composite SAN model

DOI: 10.26275/r5hq-2nnh Dataset ID: 157 Dataset Version: 2

Dataset citation: Garny, A., & Hunter, P. (2022). Fabbri-based composite SAN model (Version 2) [Data set]. SPARC Consortium. https://doi.org/10.26275/R5HQ-2NNH

Cited by

DOI: doi:10.1113/jp273259 [Originating Publication] 
Citation: Fabbri, A., Fantini, M., Wilders, R., & Severi, S. (2017). Computational analysis of the human sinus node action potential: model development and effects of mutations. The Journal of Physiology, 595(7), 2365–2396. Portico. https://doi.org/10.1113/jp273259

Computational analysis of the human sinus node action potential - Model development and effects of mutations

DOI: 10.26275/rxio-xrgl Dataset ID: 135 Dataset Version: 2

Dataset citation: Garny, A., & Hunter, P. (2022). Computational analysis of the human sinus node action potential - Model development and effects of mutations (Version 2) [Data set]. SPARC Consortium. https://doi.org/10.26275/RXIO-XRGL

Cited by

DOI: doi:10.1113/jp273259 [Originating Publication] 
Citation: Fabbri, A., Fantini, M., Wilders, R., & Severi, S. (2017). Computational analysis of the human sinus node action potential: model development and effects of mutations. The Journal of Physiology, 595(7), 2365–2396. Portico. https://doi.org/10.1113/jp273259

Comparison of the intrinsic cardiac nervous system across male and female rat hearts

DOI: 10.26275/gbxz-incd Dataset ID: 77 Dataset Version: 3

Dataset citation: Leung, C., Robbins, S., Moss, A., Heal, M., Osanlouy, M., Christie, R., Huffman, T., Farahani, N., Monteith, C., Chen, J., Hunter, P., Tappan, S., Vadigepalli, R., Cheng, Z., & Schwaber, J. (2022). Comparison of the intrinsic cardiac nervous system across male and female rat hearts (Version 3) [Data set]. SPARC Consortium. https://doi.org/10.26275/GBXZ-INCD

Cited by

DOI: doi:10.17504/protocols.io.bdz5i786 [Protocol] 
Citation: Leung, C., Heal, M., Robbins, S., Moss, A., Monteith, C., & Tappan, S. (2020). Single-Cell ICN Neuron Mapping and 3D Heart Reconstruction with Tissue Mapper v1. https://doi.org/10.17504/protocols.io.bdz5i786


DOI: doi:10.1101/2020.09.22.306670 [Citation] 
Citation: Sullivan, A. E., Tappan, S. J., Angstman, P. J., Rodriguez, A., Thomas, G. C., Hoppes, D. M., Abdul-Karim, M. A., Heal, M. L., & Glaser, J. R. (2020). A comprehensive, FAIR file format for neuroanatomical structure modeling. https://doi.org/10.1101/2020.09.22.306670


DOI: doi:10.1016/j.isci.2021.102795 [Citation] 
Citation: Leung, C., Robbins, S., Moss, A., Heal, M., Osanlouy, M., Christie, R., Farahani, N., Monteith, C., Chen, J., Hunter, P., Tappan, S., Vadigepalli, R., Cheng, Z. (Jack), & Schwaber, J. S. (2021). 3D single cell scale anatomical map of sex-dependent variability of the rat intrinsic cardiac nervous system. IScience, 24(7), 102795. https://doi.org/10.1016/j.isci.2021.102795


DOI: doi:10.1007/s12021-021-09530-x [Citation] 
Citation: Sullivan, A. E., Tappan, S. J., Angstman, P. J., Rodriguez, A., Thomas, G. C., Hoppes, D. M., Abdul-Karim, M. A., Heal, M. L., & Glaser, J. R. (2021). A Comprehensive, FAIR File Format for Neuroanatomical Structure Modeling. Neuroinformatics. https://doi.org/10.1007/s12021-021-09530-x

Effect of electrical stimulation of vagal afferent terminals located in the stomach muscle wall on feeding behavior

DOI: 10.26275/elbl-3vxh Dataset ID: 46 Dataset Version: 2

Dataset citation: Phillips, R., Powley, T., Rajwa, B., Jaffey, D., Irazoqui, P., Tan, Z., Lu, K.-H., & Liu, Z. (2022). Effect of electrical stimulation of vagal afferent terminals located in the stomach muscle wall on feeding behavior (Version 2) [Data set]. SPARC Consortium. https://doi.org/10.26275/ELBL-3VXH

Cited by

DOI: doi:10.17504/protocols.io.b2qgqdtw [Protocol] 
Citation: Phillips, R., Jaffey, D., & Powley, T. (2021). Protocol for chronic implantation of patch electrodes on the gastric muscle wall of the rat v1. https://doi.org/10.17504/protocols.io.b2qgqdtw

Enteric nervous system expression profiling by high throughput scRNA-sequencing in human and mouse colon

DOI: 10.26275/cxej-bm2v Dataset ID: 222 Dataset Version: 2

Dataset citation: Wright, C. M., Schneider, S., Smith-Edwards, K., Marfa, F. A., Leembruggen, A., Gonzalez, M. V., Kothakapa, D., Anderson, J., Maguire, B. A., Gao, T., Missall, T. A., Howard, M., Bornstein, J., Davis, B., & Heuckeroth, R. (2022). Enteric nervous system expression profiling by high throughput scRNA-sequencing in human and mouse colon (Version 2) [Data set]. SPARC Consortium. https://doi.org/10.26275/CXEJ-BM2V

Cited by

DOI: doi:10.17504/protocols.io.w26fghe [Protocol] 
Citation: M Wright, C., & Robert O Heuckeroth,  not provided. (2019). Processing Human Colon &amp;quot;Myenteric Plexus&amp;quot; for Single Nuclei RNA-seq v1. https://doi.org/10.17504/protocols.io.w26fghe


DOI: doi:10.1016/j.jcmgh.2020.12.014 [Originating Publication] 
Citation: Wright, C. M., Schneider, S., Smith-Edwards, K. M., Mafra, F., Leembruggen, A. J. L., Gonzalez, M. V., Kothakapa, D. R., Anderson, J. B., Maguire, B. A., Gao, T., Missall, T. A., Howard, M. J., Bornstein, J. C., Davis, B. M., & Heuckeroth, R. O. (2021). scRNA-Seq Reveals New Enteric Nervous System Roles for GDNF, NRTN, and TBX3. Cellular and Molecular Gastroenterology and Hepatology, 11(5), 1548-1592.e1. https://doi.org/10.1016/j.jcmgh.2020.12.014

Spatially tracked single-cell-scale RNAseq of porcine right atrial ganglionic plexus (RAGP) neurons

DOI: 10.26275/az1n-uv7s Dataset ID: 116 Dataset Version: 2

Dataset citation: Moss, A., Vadigepalli, R., Schwaber, J., Achanta, S., Robbins, S., & Kuttippurathu, L. (2022). Spatially tracked single-cell-scale RNAseq of porcine right atrial ganglionic plexus (RAGP) neurons (Version 2) [Data set]. SPARC Consortium. https://doi.org/10.26275/AZ1N-UV7S

Cited by

DOI: doi:10.21203/rs.3.pex-962/v1 [Citation] 
Citation: Kuttippurathu, L., Moss, A., & Vadigepalli, R. (2021). Single Cell scale RNA-seq Analysis Protocol to analyze Smart-3SEQ data from RAGP neurons of pig heart. https://doi.org/10.21203/rs.3.pex-962/v1

Optogenetic activation of nitrergic and cholinergic neurons of murine colonic myenteric plexus

DOI: 10.26275/mxqx-h7ty Dataset ID: 126 Dataset Version: 2

Dataset citation: Heredia, D., & Gould, T. (2022). Optogenetic activation of nitrergic and cholinergic neurons of murine colonic myenteric plexus (Version 2) [Data set]. SPARC Consortium. https://doi.org/10.26275/MXQX-H7TY

Cited by

DOI: doi:10.17504/protocols.io.82fhybn [Protocol] 
Citation: Heredia, D. (2019). Imaging and stimulating enteric neurons in the murine large intestine v1. https://doi.org/10.17504/protocols.io.82fhybn

Optogenetic inhibition of nitrergic and cholinergic neurons of murine colonic myenteric plexus

DOI: 10.26275/qskp-awpu Dataset ID: 224 Dataset Version: 1

Dataset citation: Heredia, D., & Gould, T. (2022). Optogenetic inhibition of nitrergic and cholinergic neurons of murine colonic myenteric plexus (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/QSKP-AWPU

Cited by

DOI: doi:10.17504/protocols.io.bqppmvmn [Protocol] 
Citation: Heredia, D., & Gould, T. (2020). Optogenetically inhibiting enteric neurons in the murine large intestine v1. https://doi.org/10.17504/protocols.io.bqppmvmn

Transcriptomic and neurochemical analysis of the stellate ganglia in mice highlights sex differences

DOI: 10.26275/e3cf-ofgn Dataset ID: 208 Dataset Version: 2

Dataset citation: Bayles, R., Denfeld, Q., Woodward, W., & Habecker, B. (2022). Transcriptomic and neurochemical analysis of the stellate ganglia in mice highlights sex differences (Version 2) [Data set]. SPARC Consortium. https://doi.org/10.26275/E3CF-OFGN

Cited by

DOI: doi:10.1038/s41598-018-27306-3 [Originating Publication] 
Citation: Bayles, R. G., Olivas, A., Denfeld, Q., Woodward, W. R., Fei, S. S., Gao, L., & Habecker, B. A. (2018). Transcriptomic and neurochemical analysis of the stellate ganglia in mice highlights sex differences. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-27306-3

Chemogenetic activation or inhibition of cholinergic or nitrergic myenteric neurons of mouse colon

DOI: 10.26275/zmf4-yf9u Dataset ID: 148 Dataset Version: 2

Dataset citation: Gould, T. (2022). Chemogenetic activation or inhibition of cholinergic or nitrergic myenteric neurons of mouse colon (Version 2) [Data set]. SPARC Consortium. https://doi.org/10.26275/ZMF4-YF9U

Cited by

DOI: doi:10.17504/protocols.io.btuznnx6 [Protocol] 
Citation: Gould, T., & Heredia, D. (2021). Contractile response to chemogenetic activation or inhibition of cholinergic or nitrergic myenteric neurons of the mouse colon v1. https://doi.org/10.17504/protocols.io.btuznnx6

Characterization of projections of longitudinal muscle motor neurons in human colon

DOI: 10.26275/uqjy-po3r Dataset ID: 125 Dataset Version: 4

Dataset citation: Brookes, S., Bains, M., Wattchow, D., Dinning, P., & Costa, M. (2022). Characterization of projections of longitudinal muscle motor neurons in human colon (Version 4) [Data set]. SPARC Consortium. https://doi.org/10.26275/UQJY-PO3R

Cited by

DOI: doi:10.17504/protocols.io.btwinpce [Protocol] 
Citation: Brookes, S., Bao Nan Chen,  not provided, & Adam Humenick,  not provided. (2021). Protocol for &amp;#34;Characterization of projections of long interneurons in human colon&amp;#34; - Brookes Lab v1. https://doi.org/10.17504/protocols.io.btwinpce


DOI: doi:10.1111/nmo.13685 [Originating Publication] 
Citation: Humenick, A., Chen, B. N., Lauder, C. I. W., Wattchow, D. A., Zagorodnyuk, V. P., Dinning, P. G., Spencer, N. J., Costa, M., & Brookes, S. J. H. (2019). Characterization of projections of longitudinal muscle motor neurons in human colon. Neurogastroenterology &amp; Motility, 31(10). Portico. https://doi.org/10.1111/nmo.13685

Ultrastructural analysis of human vagus nerve

DOI: 10.26275/rt8g-gu2v Dataset ID: 225 Dataset Version: 1

Dataset citation: Havton, L. A., Biscola, N. P., Stern, E., Mihaylov, P. V., Kubal, C. A., Wo, J., Gupta, A., Baronowsky, E. A., Ward, M., Jaffey, D., & Powley, T. L. (2022). Ultrastructural analysis of human vagus nerve (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/RT8G-GU2V

Cited by

DOI: doi:10.17504/protocols.io.xpxfmpn [Protocol] 
Citation: Biscola, N., & Havton, L. (2019). Nerve tissue processing for transmission electron microscopy (TEM) v1. https://doi.org/10.17504/protocols.io.xpxfmpn


DOI: doi:10.17504/protocols.io.b446qyze [Protocol] 
Citation: Powley, T., Jaffey, D., Gupta, A., Mihaylov, P., & Wo, J. (2022). Collection of human vagal tissue samples for TEM imaging v2. https://doi.org/10.17504/protocols.io.b446qyze

High-throughput segmentation of rat unmyelinated axons by deep learning

DOI: 10.26275/k0mx-jcth Dataset ID: 226 Dataset Version: 1

Dataset citation: Havton, L. A., Biscola, N. P., Plebani, E., Rajwa, B., Shemonti, A., Jaffey, D., Powley, T. L., Keast, J. R., Lu, K.-H., & Dundar, M. (2022). High-throughput segmentation of rat unmyelinated axons by deep learning (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/K0MX-JCTH

Cited by

DOI: doi:10.17504/protocols.io.xpxfmpn [Protocol] 
Citation: Biscola, N., & Havton, L. (2019). Nerve tissue processing for transmission electron microscopy (TEM) v1. https://doi.org/10.17504/protocols.io.xpxfmpn


DOI: doi:10.17504/protocols.io.bzwcp7aw [Protocol] 
Citation: Powley, T., & Jaffey, D. (2021). Collection of rat vagal tissue samples for TEM imaging v1. https://doi.org/10.17504/protocols.io.bzwcp7aw


DOI: doi:10.17504/protocols.io.b2ssqeee [Protocol] 
Citation: R Keast, J., & Osborne, P. (2021). Intracardiac perfusion with fixative for ultrastructural neuroanatomical studies v1. https://doi.org/10.17504/protocols.io.b2ssqeee

CLARITY and three-dimensional (3D) imaging of the mouse and porcine colonic innervation

DOI: 10.26275/sip4-ioyz Dataset ID: 31 Dataset Version: 4

Dataset citation: Yuan, P.-Q., Wang, L., Mulugeta, M., & Tache, Y. (2022). CLARITY and three-dimensional (3D) imaging of the mouse and porcine colonic innervation (Version 4) [Data set]. SPARC Consortium. https://doi.org/10.26275/SIP4-IOYZ

Cited by

DOI: doi:10.17504/protocols.io.4sagwae [Protocol] 
Citation: pq Yuan, P.-Q., Wang, L., & Taché, Y. (2019). Tache_Yuan_OT2OD024899_CLARITYAnd3DImagingOfColonicENSintheMouseAndPig_1_2019-Mouse_Protocol (Annotation Copy) v1. https://doi.org/10.17504/protocols.io.4sagwae

Multicolor adeno-associated virus sparse labeling and 3D digital tracing of enteric plexus in mouse proximal colon

DOI: 10.26275/1uno-tynt Dataset ID: 221 Dataset Version: 3

Dataset citation: Wang, L., Challis, C., Li, S., Fowlkes, C., Kumar, S. R. R., Yuan , P.-Q., Tache, Y., & Bains, M. (2022). Multicolor adeno-associated virus sparse labeling and 3D digital tracing of enteric plexus in mouse proximal colon (Version 3) [Data set]. SPARC Consortium. https://doi.org/10.26275/1UNO-TYNT

Cited by

DOI: doi:10.17504/protocols.io.bqavmse6 [Protocol] 
Citation: Wang, L., Challis, C., Liang, H., Li, S., Fowlkes, C., Sullivan, A., SR, K., & Taché, Y. (2020). Multicolor adeno-associate virus labeling and 3D digital tracing of enteric plexus in mouse proximal colon v1. https://doi.org/10.17504/protocols.io.bqavmse6

Sympathetic and parasympathetic effects on membrane currents in isolated pig ventricular myocytes

DOI: 10.26275/jsaw-2w1q Dataset ID: 228 Dataset Version: 1

Dataset citation: Agarwal, S., & Harvey, R. (2022). Sympathetic and parasympathetic effects on membrane currents in isolated pig ventricular myocytes (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/JSAW-2W1Q

Cited by

DOI: doi:10.17504/protocols.io.ba8iihue [Protocol] 
Citation: Harvey, R., & Agarwal, S. (2020). Isolation of Adult Pig Ventricular Myocytes v1. https://doi.org/10.17504/protocols.io.ba8iihue


DOI: doi:10.17504/protocols.io.ba8mihu6 [Protocol] 
Citation: Harvey, R., & Agarwal, S. (2020). L-Type Ca2+ Current Protocol v1. https://doi.org/10.17504/protocols.io.ba8mihu6


DOI: doi:10.1111/bph.15382 [Originating Publication] 
Citation: Rudokas, M. W., Post, J. P., Sataray‐Rodriguez, A., Sherpa, R. T., Moshal, K. S., Agarwal, S. R., & Harvey, R. D. (2021). Compartmentation of β
        2
        ‐adrenoceptor stimulated cAMP responses by phosphodiesterase types 2 and 3 in cardiac ventricular myocytes. British Journal of Pharmacology, 178(7), 1574–1587. Portico. https://doi.org/10.1111/bph.15382

Vagus nerve stimulation mapping in swine

DOI: 10.26275/qw1u-zxea Dataset ID: 229 Dataset Version: 1

Dataset citation: Ludwig, K. A., Nicolai, E. N., Settell, M. L., Grill, W. M., & Pelot, N. A. (2022). Vagus nerve stimulation mapping in swine (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/QW1U-ZXEA

Cited by

DOI: doi:10.17504/protocols.io.bkeyktfw [Protocol] 
Citation: N Nicolai, E., & A Ludwig, K. (2020). Vagus Nerve Stimulation Evoked Electroneurography and Electromyography Recordings in Swine v1. https://doi.org/10.17504/protocols.io.bkeyktfw

Calcitonin gene-related peptide immunoreactive (CGRP-IR) innervation of mouse stomach

DOI: 10.26275/upm9-v4ya Dataset ID: 230 Dataset Version: 1

Dataset citation: Nguyen, D., Ma, J., Madas, J., Mistareehi, A., Chen, J., Powley, T. L., & Cheng, Z. (2022). Calcitonin gene-related peptide immunoreactive (CGRP-IR) innervation of mouse stomach (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/UPM9-V4YA

Cited by

DOI: doi:10.17504/protocols.io.6qpvr6k7zvmk/v1 [Protocol] 
Citation: Nguyen, D., & Ma, J. (2022). Mapping CGRP-IR innervation of male mice stomach with Neurolucida 360 v1. https://doi.org/10.17504/protocols.io.6qpvr6k7zvmk/v1

Calcium dynamics imaging of vasoactive intestinal peptide-expressing (VIP) enteric nervous system (ENS) neurons

DOI: 10.26275/zuwb-qnqk Dataset ID: 231 Dataset Version: 1

Dataset citation: Margiotta, J., & Howard, M. (2022). Calcium dynamics imaging of vasoactive intestinal peptide-expressing (VIP) enteric nervous system (ENS) neurons (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/ZUWB-QNQK

Cited by

DOI: doi:10.17504/protocols.io.14egn76xpv5d/v1 [Protocol] 
Citation: Margiotta, J., & Howard, M. (2022). Imaging of Calcium Dynamics in Vasoactive Intestinal Peptide-expressing Neurons of Enteric Nervous System v1. https://doi.org/10.17504/protocols.io.14egn76xpv5d/v1

Rat vagus nerve TH- (tyrosine hydroxylase) and ChAT- (choline acetyltransferase) positive fibers

DOI: 10.26275/nav5-oeol Dataset ID: 233 Dataset Version: 1

Dataset citation: Pelot, N. A., Ezzell, J. A., Cariello, J. E., Goldhagen, G. B., Clissold, K. A., & Grill, W. M. (2022). Rat vagus nerve TH- (tyrosine hydroxylase) and ChAT- (choline acetyltransferase) positive fibers (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/NAV5-OEOL

Cited by

DOI: doi:10.17504/protocols.io.6hehb3e [Protocol] 
Citation: Ashley Ezzell, J., A. Pelot, N., A. Clissold, K., & M. Grill, W. (2019). SPARC_Duke_Grill_OT2-OD025340_VagusNerve_IHC_TH v1. https://doi.org/10.17504/protocols.io.6hehb3e


DOI: doi:10.17504/protocols.io.bi9tkh6n [Protocol] 
Citation: Ashley Ezzell, J., A. Pelot, N., A. Clissold, K., & M. Grill, W. (2020). SPARC_Duke_Grill_OT2-OD025340_VagusNerve_IHC_ChAT v2. https://doi.org/10.17504/protocols.io.bi9tkh6n


DOI: doi:10.17504/protocols.io.6hfhb3n [Protocol] 
Citation: Ashley Ezzell, J., A. Pelot, N., A. Clissold, K., & M. Grill, W. (2019). SPARC_Duke_Grill_OT2-OD025340_VagusNerve_IHC_ChAT v1. https://doi.org/10.17504/protocols.io.6hfhb3n

Human vagus nerve TH- (tyrosine hydroxylase) and ChAT- (choline acetyltransferase) positive fibers

DOI: 10.26275/x10i-9c9u Dataset ID: 234 Dataset Version: 1

Dataset citation: Pelot, N. A., Ezzell, J. A., Cariello, J. E., Goldhagen, G. B., Clissold, K. A., & Grill, W. M. (2022). Human vagus nerve TH- (tyrosine hydroxylase) and ChAT- (choline acetyltransferase) positive fibers (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/X10I-9C9U

Cited by

DOI: doi:10.17504/protocols.io.6hehb3e [Protocol] 
Citation: Ashley Ezzell, J., A. Pelot, N., A. Clissold, K., & M. Grill, W. (2019). SPARC_Duke_Grill_OT2-OD025340_VagusNerve_IHC_TH v1. https://doi.org/10.17504/protocols.io.6hehb3e


DOI: doi:10.17504/protocols.io.6hfhb3n [Protocol] 
Citation: Ashley Ezzell, J., A. Pelot, N., A. Clissold, K., & M. Grill, W. (2019). SPARC_Duke_Grill_OT2-OD025340_VagusNerve_IHC_ChAT v1. https://doi.org/10.17504/protocols.io.6hfhb3n


DOI: doi:10.17504/protocols.io.bi9tkh6n [Protocol] 
Citation: Ashley Ezzell, J., A. Pelot, N., A. Clissold, K., & M. Grill, W. (2020). SPARC_Duke_Grill_OT2-OD025340_VagusNerve_IHC_ChAT v2. https://doi.org/10.17504/protocols.io.bi9tkh6n

High-density penetrating array dorsal root ganglia recordings

DOI: 10.26275/vzxw-kwdu Dataset ID: 236 Dataset Version: 1

Citation: Sperry, Z., Na, K., Vöröslakos, M., Parizi, S., Jun, J. J., Bruns, T., Yoon, E., & Seymour, J. (2022). High-density penetrating array dorsal root ganglia recordings (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/VZXW-KWDU

Cited by

DOI: doi:10.17504/protocols.io.w5nfg5e [Protocol] 
Citation: J Sperry, Z., Na, K., Vöröslakos, M., Parizi, S., Jun, J., M. Bruns, T., Yoon, E., & P. Seymour, J. (2019). High-Density Penetrating Microelectrode Recordings from Anesthetized Feline Dorsal Root Ganglia v1. https://doi.org/10.17504/protocols.io.w5nfg5e


DOI: doi:10.1038/s41378-020-0149-z [Originating Publication] 
Citation: Na, K., Sperry, Z. J., Lu, J., Vöröslakos, M., Parizi, S. S., Bruns, T. M., Yoon, E., & Seymour, J. P. (2020). Novel diamond shuttle to deliver flexible neural probe with reduced tissue compression. Microsystems &amp; Nanoengineering, 6(1). https://doi.org/10.1038/s41378-020-0149-z

Ablation of the intrinsic cardiac nervous system to evaluate efferent control of cardiac function

DOI: 10.26275/rmkt-5ypu Dataset ID: 237 Dataset Version: 1

Dataset citation: Hanna, P., Dacey, M., Swid, A., & Shivkumar, K. (2022). Ablation of the intrinsic cardiac nervous system to evaluate efferent control of cardiac function (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/RMKT-5YPU

Cited by

DOI: doi:10.17504/protocols.io.bvpbn5in [Protocol] 
Citation: Hanna, P., Ardell, J., & Shivkumar, K. (2021). Evaluating intrinsic cardiac neural control of cardiac function using sequential ganglionated plexus ablations v1. https://doi.org/10.17504/protocols.io.bvpbn5in


DOI: doi:10.1161/CIRCRESAHA.120.318458 [Originating Publication] 
Citation: Hanna, P., Dacey, M. J., Brennan, J., Moss, A., Robbins, S., Achanta, S., Biscola, N. P., Swid, M. A., Rajendran, P. S., Mori, S., Hadaya, J. E., Smith, E. H., Peirce, S. G., Chen, J., Havton, L. A., Cheng, Z. (Jack), Vadigepalli, R., Schwaber, J., Lux, R. L., … Shivkumar, K. (2021). Innervation and Neuronal Control of the Mammalian Sinoatrial Node a Comprehensive Atlas. Circulation Research, 128(9), 1279–1296. https://doi.org/10.1161/circresaha.120.318458

Temporal dispersion in porcine subdiaphragmatic nerves ex vivo

DOI: 10.26275/4mfy-y7bj Dataset ID: 239 Dataset Version: 1

Dataset citation: Tarotin, I., Mastitskaya, S., Ravagli, E., holder, david, & Aristovich, K. (2022). Temporal dispersion in porcine subdiaphragmatic nerves ex vivo (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/4MFY-Y7BJ

Cited by

DOI: doi:10.17504/protocols.io.b59hq936 [Protocol] 
Citation: Tarotin, I., Mastitskaya, S., Ravagli, E., D Perkins, J., S Holder, D., & Aristovich, K. (2022). Measurement of activity-related impedance changes in porcine subdiaphragmatic nerve v2. https://doi.org/10.17504/protocols.io.b59hq936

Mapping colon and bladder innervating sensory neurons in CLARITY cleared ganglia in mouse

DOI: 10.26275/be0x-9mzy Dataset ID: 238 Dataset Version: 1

Dataset citation: Brierley, S. M., & Harrington, A. (2023). Mapping colon and bladder innervating sensory neurons in CLARITY cleared ganglia in mouse (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/BE0X-9MZY

Cited by

DOI: doi:10.17504/protocols.io.x54v9y391g3e/v1 [Protocol] 
Citation: Harrington, A. (2022). Cholera Toxin Subunit B (CTB) Retrograde tracing from the mouse colon and bladder wall. v1. https://doi.org/10.17504/protocols.io.x54v9y391g3e/v1


DOI: doi:10.17504/protocols.io.j8nlkk971l5r/v2 [Protocol] 
Citation: Harrington, A. (2022). Mapping dichotomisingcolon and bladder sensory afferent neurons and terminals and if they undergo structural plasticity post-colitis. v2. https://doi.org/10.17504/protocols.io.j8nlkk971l5r/v2


DOI: doi:10.17504/protocols.io.14egn7mpqv5d/v1 [Protocol] 
Citation: Harrington, A. (2022). Mouse model of post-colitis (DNBS) chronic visceral hypersensitivity. v1. https://doi.org/10.17504/protocols.io.14egn7mpqv5d/v1

Imaging colon and bladder sensory convergence in CLARITY cleared mouse spinal cord

DOI: 10.26275/iyto-oxay Dataset ID: 240 Dataset Version: 1

Dataset citation: Brierley, S. M., & Harrington, A. (2023). Imaging colon and bladder sensory convergence in CLARITY cleared mouse spinal cord (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/IYTO-OXAY

Cited by

DOI: doi:10.17504/protocols.io.x54v9y391g3e/v1 [Protocol] 
Citation: Harrington, A. (2022). Cholera Toxin Subunit B (CTB) Retrograde tracing from the mouse colon and bladder wall. v1. https://doi.org/10.17504/protocols.io.x54v9y391g3e/v1


DOI: doi:10.17504/protocols.io.j8nlkk971l5r/v2 [Protocol] 
Citation: Harrington, A. (2022). Mapping dichotomisingcolon and bladder sensory afferent neurons and terminals and if they undergo structural plasticity post-colitis. v2. https://doi.org/10.17504/protocols.io.j8nlkk971l5r/v2

Evaluating spheres of influence for efferent neural control of the heart

DOI: 10.26275/wcli-rv5b Dataset ID: 241 Dataset Version: 1

Dataset citation: Hanna, P., Dacey, M., Swid, A., & Ardell, J. (2022). Evaluating spheres of influence for efferent neural control of the heart (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/WCLI-RV5B

Cited by

DOI: doi:10.17504/protocols.io.bvpbn5in [Protocol] 
Citation: Hanna, P., Ardell, J., & Shivkumar, K. (2021). Evaluating intrinsic cardiac neural control of cardiac function using sequential ganglionated plexus ablations v1. https://doi.org/10.17504/protocols.io.bvpbn5in

Calcium imaging and motility tracking of distinct myenteric neuronal subsets in mice

DOI: 10.26275/x0oc-7oc5 Dataset ID: 242 Dataset Version: 1

Dataset citation: Heredia, D., & Gould, T. (2022). Calcium imaging and motility tracking of distinct myenteric neuronal subsets in mice (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/X0OC-7OC5

Cited by

DOI: doi:10.17504/protocols.io.82fhybn [Protocol] 
Citation: Heredia, D. (2019). Imaging and stimulating enteric neurons in the murine large intestine v1. https://doi.org/10.17504/protocols.io.82fhybn

Dorsal root ganglion stimulation to modulate mechanosensitive colorectal afferent transmission in mice

DOI: 10.26275/36ua-upkq Dataset ID: 243 Dataset Version: 1

Dataset citation: Feng, B. (2022). Dorsal root ganglion stimulation to modulate mechanosensitive colorectal afferent transmission in mice (Version 1) [Data set]. SPARC Consortium. https://doi.org/10.26275/36UA-UPKQ

Cited by

DOI: doi:10.17504/protocols.io.36wgq7b4ovk5/v1 [Protocol] 
Citation: Chen, L. (2022). Synchronized spinal nerve and dorsal root ganglia stimulation v1. https://doi.org/10.17504/protocols.io.36wgq7b4ovk5/v1

© 2022 GitHub, Inc.
Terms
Privacy
Security
Status
Docs
Contact GitHub
Pricing
API
Training
Blog
About